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ABSTRACT Encouraged by the considerable cost reduction, small-scale solar power deployment has
become a reality during the last decade. However, grid integration of small-scale photovoltaic (PV) solar
systems still remains unresolved. High penetration of Renewable Energy Sources (RESs) results in technical
challenges for grid operators. To address this, Virtual Power Plants (VPPs) have been defined and developed
to manage distributed energy resources with the aim of facilitating the integration of RESs. This paper
introduces a hybrid irradiance forecasting approach aimed at facilitating the integration of PV systems into
a VPP, especially when a historical irradiance dataset is exiguous or non-existent. This approach is based on
Artificial Neural Networks (ANNs) and a novel similar hour-based selection algorithm, has been tested for a
real PV installation, and has been validated also considering irradiance measurements from an aggregation of
ground-based meteorological stations, which emulate the nodes of a VPP. Under a reduced historical dataset,
the results show that the proposed similar hour-based method produces the best forecasts with regard to
those obtained by the ANN-based approach. This is particularly true for one-month and two-month datasets
minimizing the mean error by 16.32% and 9.07% respectively. Finally, to demonstrate the potential of the
proposed approach, a comparative analysis has been carried out between the hybrid method and the most
used benchmarks in the literature, namely, the persistence method and the method based on similar days.
It has been demonstrated conclusively that the proposed model yields promising results regardless the length
of the historical dataset.

INDEX TERMS Virtual power plants, hybrid irradiance forecasting, solar power integration, similarity
matching.

NOMENCLATURE
ACRONYMS
AI artificial intelligence
ANN artificial neural network
BR Bayesian regularization
DG distributed generation
EMS energy management system
ESS energy storage system
ICT information and communication technologies
k-NN k-nearest neighbors
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LM Levenberg-Marquardt
MLP multilayer perceptron

NWP numerical weather prediction

PV photovoltaic

RES renewable energy source

RNN recurrent artificial neural network

SCG scaled conjugate gradient

SH similar hour-based method

TSA time series analysis

VPP virtual power plant
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NOTATION

BNI beam normal irradiance
[
W/m2

]
CCF cloud cover factor [-]
DHI diffuse horizontal irradiance

[
W/m2

]
GHI global horizontal irradiance

[
W/m2

]
MAE mean absolute error

[
W/m2

]
MAPE mean absolute percentage error [%]
NRMSE normalized root-mean-square error [%]
PICP Prediction Interval Coverage Probability [-]
α elevation angle [rad]
θz zenith angle [rad]
9 azimuth angle [rad]
δ declination angle [rad]
8 latitude angle [rad]
S spatial pixel resolution [km]
H cloud height [km]
(X, Y ) site location [pixel]
(RX , RY ) relative cloud position [pixel]
(PX , PY ) cloud location [pixel]
E extra-terrestrial radiation

[
W/m2

]
T temperature [◦C]
D difference vector [-]
u uncertainty threshold [km]
ω weight [-]
ED Euclidean distance [-]
t prediction hours [h]
z past hours [h]
s similar hours [h]
c candidate hours [h]
N normal distribution [-]
µ mean value [-]
σ standard deviation [-]
Yt measured data

[
W/m2

]
Ŷt forecast value

[
W/m2

]
I. INTRODUCTION
The adoption of photovoltaic (PV) power generation is rising
steeply worldwide [1]. There are several reasons behind its
success: (a) the cost of photovoltaic power has plummeted
since PV modules, storage systems and balance of system
costs have been steadily dropping [2]. This has led to an
increasing competitiveness in comparison to the conventional
non-renewable resources; (b) PV peak power generation coin-
cides with the time of higher load demand; (c) the increasing
concern about climate change has definitely spread through-
out the world and the electricity sector is playing a central
role to fully decarbonize the power system. As a result, gov-
ernments have implemented supportive policies to encourage
investments in renewable sources of energy [3]; (d) the search
for energy independence in most developed countries; and
(e) most importantly the continued progress and improved
accuracy of forecasting strategies of PV generation.

In general, power forecasting for renewable energy sources
(RESs) has posed a considerable challenge during the

last decade. This has particularly been the case for non-
predictable resources such as solar energy where the power
generation constantly fluctuates on account of meteoro-
logical factors such as cloud cover, temperature, wind
speed or humidity level, which are stochastic in nature. This
inherent uncertainty has hindered PV power integration at a
high penetration level [4], [5]. This drawback can be over-
come by including energy storage systems (ESSs) whereby
this intermittent source of energy becomes more dispatch-
able [6]–[8]. However, a more technical and economic solu-
tion has been put forward: the aggregation of several PV
systems into the so-called Virtual Power Plant (VPP) [9]–
[11]. This approach allows prosumers [12], to maximize
revenue opportunities by participating in the energy market
mechanisms and by taking part in the operation of distribution
and transmission networks in terms of the active control
and services VPPs can provide, e.g. voltage regulation and
frequency balancing, among others.

A VPP usually integrates four components [9]: (a) Dis-
tributedGeneration (DG) units based onRESs and small scale
fossil fuel conventional dispatchable generators; (b) ESSs;
(c) responsive or flexible loads; and (d) information and
communication technologies (ICTs) which play an essential
role in the technological core of a VPP: the energy manage-
ment system (EMS). The EMS coordinates the power flows
among the different units in the VPP. Through a bidirectional
communication strategy, which should be based on existing
open standards such as the IEC 61850 [13], the VPP not only
obtains information about the current state of the different
nodes but also sends the commands related to specific tar-
gets, e.g. minimization of the generation costs, maximization
of profit or reduction of greenhouse gases, to name a few.
A crucial part, in the VPP general concept, involves obtaining
accurate and rapid forecasts of the power generated by RESs
with stochastic nature [14]. The purpose of forecasts is three-
fold: firstly, the power predictions allow VPP operators to
meet regulatory requirements increasing the reliability and
efficiency of the of the VPP; secondly, accurate predictions
contribute to grid stability; and finally, more favourable trad-
ing conditions on the electricity markets can be achieved
thereby maximizing revenue.

In the literature, there is a broad range of studies aimed at
obtaining accurate forecasts. In this regard, [15]–[19] present
comprehensive reviews of well-established techniques devel-
oped to forecast PV power generation. According to dif-
ferent factors, forecasting methods can be categorized into
different groups. Regarding the forecasted parameter, two
different approaches have been implemented: direct [20] and
indirect [21]. Through historical datasets of weather con-
ditions and PV power generation, the direct method pre-
dicts the generated power. Indirect forecasting, on the other
hand, firstly predicts the solar irradiance and then, the output
power is calculated by using a performance model of the PV
plant. This approach is based on several methods including
Numerical Weather Prediction (NWP) models, image-based
systems, statistical-based alternatives and hybrid or ensemble
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methods. As for the time horizon, four categories can be
found [22], [23]: very short term forecast also called now-
casting (from 1 min to several minutes), short-term forecast
(from 1 hour to several hours), medium term forecast (from
1 month to 1 year) and long-term forecast (up to several
years). As far as the model approach is concerned, four types
have been widely used: (a) statistical models based on time
series analysis (TSA) which tries to identify patterns between
historical datasets and the output parameters; (b) artificial
intelligence (AI) models mainly based on artificial neural net-
works (ANNs); (c) physical strategies which use solar and PV
models for solar power forecasting; (d) hybrid models which
explore different algorithm combinations with the aim of
improving forecast accuracy and reducing computational bur-
den for online forecasting applications [22]. Another ongoing
challenge in solar power forecasting consists in assessing the
uncertainty of the results. To assist with this, deterministic
forecasting, also called point forecasting, produces a single
value for each timestamp within the time horizon without
considering either the upper and lower bounds or the percent-
age of confidence for each value. Probabilistic forecasting,
on the other hand, provides additional accurate information
about the expected values in terms of the range of plausible
values and the probability associated to each of them [17].
Finally, regarding the spatial horizon, forecasting techniques
can be applied to a single plant or to an ensemble with the
last option being of major interest because it usually provides
greater accuracy.

As mentioned above, the indirect forecasting approach
aims firstly at predicting the solar irradiance, mainly global
horizontal irradiance (GHI), and then by using the physical
model of the PV system, the output power is calculated. This
is the strategy used in this paper for one reason: weather-
related variables and irradiance datasets can be obtained from
ground-based meteorological stations. Likewise, cloudiness
and temperature forecasts are freely available from weather
forecast web services such that of AEMET in Spain [24].
This clearly facilitates stable and accurate forecasts even in
the initial stage of the PV system operation [21]. As opposed
to indirect forecasts, direct approaches require an extensive
historical dataset for the derivation of the power forecast
model, which reduces the possibility of accurate predictions
when a new VPP node is integrated. It would be interesting to
forecast other irradiance-related parameters such as Diffuse
Horizontal Irradiance (DHI) and Beam Normal Irradiance
(BNI). However, there are no datasets for these variables since
the GHI is usually the only parameter measured by meteo-
rological stations. That is the reason why indirect forecast-
ing methods are mainly developed for GHI predictions and
for the other irradiance-related variables are virtually non-
existent, especially for DHI [25] in which issues relating to
sensor calibration and spatial representativeness are difficult
to address [26].

Approaches to irradiance forecasting can range from the
most basic such that of similar day-based method to the most
demanding in terms of computational load such as Recurrent

Artificial Neural Networks (RNNs) which require compu-
tationally demanding training algorithms. The similar day-
based approach provides an appropriate choice for irradiance
forecasting. Similar day-based forecasting involves mining a
dataset with the aim of finding days or even hours which are
similar to the forecast day/hour in terms of certain param-
eters such as cloudiness and temperature [27]. The success
of this alternative relies on the low computational burden it
imposes on the forecast algorithm. On the other hand, ANNs
have been extensively used for daily solar irradiance fore-
casts [28]–[33]. The forecast performance of an ANN relies
on the learning algorithm along with the data available for
the training process, the transfer function, the architecture, the
nonlinear mapping capacity and the choice of input variables.
The main limitation of ANNs stems from the fact that they
required an extensive dataset for training purposes for better
generalization and accuracy. Conversely, similarity matching
works better than ANNs for short datasets, especially when a
time granularity of one hour is considered. This enhancement
is demonstrated conclusively in this work. Therefore, in the
context of a VPP and at the earlier stages of its operationwhen
limited data is available, hybrid strategies, which combine
different methods, can improve the overall forecasting accu-
racy. In general, hybrid techniques have been widely used
in diverse industrial applications [34], [35], delivering good
results.

In this paper, an irradiance short-term forecasting strategy
is presented, with the aim of facilitating the integration of
PV systems in VPPs, especially when the lack of a compre-
hensive dataset hinders the forecasting performance of the
algorithms causing inaccurate results. This strategy is based
on a hybrid approach which combines an ANN and a novel
similar hour-based forecasting algorithm. The outputs of both
forecasting methods are dynamically weighted, according to
the type of the day and some accuracy metrics, to provide
the final forecast. The forecasting approach relies on no-
cost temperature and cloudiness forecast maps generated by
the AEMET via NWP, the irradiance measurements from
a real PV installation located in the Polytechnic School of
Alcala University and different ground-based meteorological
stations emulating the role of VPP nodes.

Themain contributions of this paper are summarized as fol-
lows: (i) the proposed forecasting approach is implemented
in the context of a VPP considering the challenges it poses
and drawing on its strengths; (ii) the input data for the fore-
casting algorithms comes from weather forecasts regularly
published, free of charge, by the AEMET; (iii) the similar
hour-based approach, which produces accurate irradiance
forecasts for a reduced dataset, this usually being the case
when a new node is integrated in the VPP; and (iv) the ensem-
ble of ANNs and the similar hour-based approach which,
through a dynamically weighted function that depends on the
type of day, produces encouraging results.

The paper is organized as follows. Section II intro-
duces a general description of the irradiance forecasting
hybrid approach. In section III the data description and
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FIGURE 1. Block diagram of the forecasting approach, which consists of two parts: (i) a data pre-processing stage and (ii) the hybrid forecasting
approach. The forecasting strategy is based on ANNs and a novel similar hour-based algorithm. The final forecast is obtained by dynamically
weighting the outputs as a function of the type of the day.

pre-processing are presented. Section IV analyses in depth the
algorithms involved in the hybrid approach. The experimental
results are presented in Section V. Finally, some conclusions
are drawn in the final section.

II. IRRADIANCE FORECASTING APPROACH. GENERAL
DESCRIPTION
An important feature of irradiance forecasting models is that,
in general, they rely on extensive historical dataset. However,
when a VPP is to be operated in a cost-efficient manner at its
initial stage or when a node is first integrated in an existing
VPP, the lack of data reduces the accuracy of the day-ahead
estimation of the irradiance and, as a result, the accuracy
of the power forecasts. This leads to uncertainties, which
result in financial penalties imposed by the grid operator.
NWP-based GHI forecasts have proved to be a tool for indi-
rect solar power prediction. Furthermore, when it comes to
VPPs, an aggregation of small-scale PV installations makes
it crucial to implement an EMS, which must include accurate
forecasts such as, for instance, the NWP-based GHI forecasts
for each location or site. However, this carries a cost, which
depends on the number of sites taking part in theVPP. In order
not to incur costs, which would cause a decline in profits, free
access NWP-based cloudiness and temperaturemaps are used
in this paper. This information along with known parameters
such as the sun position, the location of the PV sites and
the extraterrestrial radiation, constitute the inputs of the GHI
forecasting hybrid approach proposed in this paper.

Fig. 1 shows the approach, which is based on ANNs and
a novel similar hour-based algorithm. The outputs of both
techniques are dynamically weighted according to the type
of the day and some accuracy metrics. Thus, uncertainties

in the 24-hour ahead final GHI forecasting, are reduced.
The forecasting method consists of two parts: (i) a data pre-
processing stage; and (ii) the hybrid forecasting approach.

i. The first part has 3 steps: (a) new data acquisition and
transformation to provide the input data of the algo-
rithm; (b) CCF calculation; and (c) data merging within
the historical dataset collected. In step (a), to manage
the ESS of some sites at night, weather forecast maps
are downloaded at 22:00 hours from [24], gathering
information on the day-ahead weather variables such
as area of cloud cover and temperature. To turn the
information from the maps into numerical data a trans-
formation process is required. In step (b) the lack of
an extensive dataset, especially at the earlier stages
of the VPP operation, makes it essential to optimize
the data available in order to provide the forecasting
algorithms with the most relevant and correlated infor-
mation. Hence, the data pre-processing stage becomes
crucial. The 24-hour-ahead cloud cover maps are used
to define a parameter, referred in this paper as Cloud
Cover Factor (CCF), Section III-A, which is also based
on the sun position. The CCF contains information
about the shadows on the PV installation generated
by a particular cloud area. In general, the shadowed
area will be larger than the corresponding cloud area.
Secondly, temperature maps are used to obtain the
temperatures for the 24-hour target forecasting period.
These temperatures can be validated by using both real
measurements taken in the PV installation and those
from the closest ground-based meteorological stations.
Finally, the extra-terrestrial radiation gives information
about the radiation at the top of the Earth’s atmosphere.
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In this paper it is assumed that the determining factor
for the loss of radiation is the CCF, disregarding the
influence of other factors such as the air molecules,
the distance the solar radiation has travelled through
the air mass, etc., which are assumed tomodify the GHI
in lesser proportion. This clearly introduces an estima-
tion error the predictable effect of which is somewhat
mitigated by giving more importance to those days
closer to the target day. This is achieved by considering
the temperature, since it is a parameter that depends
on the season of the year. Finally, in step (c), once
the information of the day-ahead weather variables has
been processed, the historical dataset is updated with
this information and the forecasting strategy can then
be implemented.

ii. The second part focuses on the forecasting strategy and
has 4 steps: (a) similar hour-based forecasting method;
(b) artificial neural network forecasting approach; (c)
hybrid forecasting strategy; and (d) weight estimation.
In step (a) the novel method referred to in this paper as
similar hour-based forecasting, Section IV-A, is imple-
mented. It is based on the traditional method of similar
days. The similar hour-based method performs reliably
dealing with the information extracted from a reduced
historical dataset. In step (b) the ANN, Section IV-
B, forecasts from the same dataset. However, ANNs
generalize better when an extensive historical dataset
is available. In step (c) both methods are combined,
thereby providing an accurate forecast irrespective of
the dataset size. This makes the efficient management
of a VPP possible from the very beginning or when a
new VPP node is added.
The combined GHI forecasting output is the weighted
sum of the individual GHI forecasting outputs of the
two methods explained above (d). The weights depend
on the type of the day, i.e. sunny, cloudy and overcast,
and the Mean Absolute Error (MAE). Metrics based on
mean and squared values have been selected to assess
the performance accuracy because they are the most
commonly used indexes in solar radiation techniques
[36]. Error mean values are used for selection purposes,
to minimize the forecasting error of each node compris-
ing the VPP, irrespective of the length of the database
considered, instead of penalizing atypical values. It is
worth mentioning that results did not change exces-
sively with the inclusion of atypical values. The type of
the day is defined bymeans of the CCF, which shows to
what extent a cloud area on the NWP-based cloudiness
maps creates shadows on the PV installation.
The weights are calculated by using (1) where ds, dc,
and do, are mutually exclusive flags which can take
the values of either 0 or 1, representing with a value
of 1, the type of day determined by the CCF, i.e. sunny,
ds = 1, cloudy, dc = 1, or overcast, do = 1, and ωd
is the value of the weights which minimize the MAE
in past hybrid predictions obtained for this type of day.

These weights are updated daily by incorporating the
latest andmost up-to-date information from the dataset,
thereby improving the accuracy of forecasting results.

ωSH = dsωds + dcωdc + doωdo
ωANN = 1− ωSH (1)

III. DATA DESCRIPTION AND PRE-PROCESSING
As mentioned above, the inputs to the algorithm are based on
weather forecasts, provided by the AEMET at different spa-
tial and temporal scales, and the extra-terrestrial radiation, E ,
which is deterministic and can be evaluated by using known
expressions. For instance, Duffie and Beckman’s equation
was considered to determine the extra-terrestrial radiation.
Nevertheless, other expressions available in the literature [37]
are equally accurate.

The weather forecasts are based on the NWP model
HARMONIE-AROME. This model is commonly utilized for
weather forecasts in Spain and other European countries [38].
NWP models include GHI and DNI forecasts, both being
necessary to model irradiance on the inclined surfaces of the
solar panels. However, the cost of purchasing this data is a
deterrent for small-scale PV systems. Other weather forecasts
include cloudiness, temperature, pressure and wind, all of
them in the shape of weather maps. Cloudiness forecasts
contain relevant information regarding irradiance. To turn this
information into numerical values some data pre-processing
must be applied. The term used in this paper for these numer-
ical values is the above-mentioned cloud cover factor (CCF),
in order not to confuse it with other parameters such as cloudi-
ness index, which is modelled in a different way. Studies
which rely on images from satellite or ground level cameras to
find the shadows cast by the clouds already exist [39]–[42].
In this regard, the CCF provides the same information but
without cost.

A. CLOUD COVER FACTOR EVALUATION FROM
CLOUDINESS FORECAST MAPS.
The CCF is dimensionless and represents, in the context of
the weather maps, the amount of cloud cover per pixel in
each cloudiness forecast map, showing a negative correlation
with the GHI, being 0 when the sunlight is not blocked by
clouds and 1 when the sun is totally covered. At a particular
time of day, e.g. 22:00, the 24 NWP-based cloudiness images,
representing the cloudiness forecast for the next 24 hours, are
downloaded from the AEMET web service. Fig. 2 represents
a zoom area of the cloudiness forecast for the Community
of Madrid (centre of the map) at 16:00 on March 1st, 2020.
This image was downloaded on February 29th, 2020. The
colormap on the right represents the percentage of cloudiness.
The spatial resolution in the map is given by the pixel size in
the image, being represented by a square with sides approxi-
mately equal to 2.5km.

Another important parameter for the CCF calculation is
the cloud height. Unfortunately, this parameter cannot be
obtained from Fig. 2 and some data pre-processing must be
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FIGURE 2. NWP-based cloudiness forecast map for the Community of
Madrid (center of the map), from the spanish website, 
AEMET. Values
range from 0% (absence of clouds) to 100% (heavy clouds).

done to identify those clouds that prevent the sun radiation
from reaching the site, i.e. the clouds between the sun and the
site. Therefore, both the cloud location and the sun’s position
are required. Fig. 3 shows the hourly position of the sun at the
spring equinox for a site located in the Northern Hemisphere,
and the most relevant variables used for the CCF evaluation.
For the site-related pixels in the map, the aim is to quantify
the CCF at a particular time of the day. Considering that the
site location is known (X, Y ), those pixels in the map covered
by the clouds (PX , PY ) can be worked out, as a function of
the cloud height (H ), by using the following equations:

PX = X + RX ≈ X +
H
S
sin (ψ)
tan (α)

(2)

PY = Y + RY ≈ Y +
H
S
cos (ψ)
tan (α)

(3)

where RX and RY represent the relative position of the pixel
with respect to the site, S is the spatial resolution in the map
(2.5km), and α and ψ are the elevation and azimuth angles,
respectively.

Since the cloud height cannot be extracted from the cloudi-
ness forecast, (2) and (3) are evaluated with the greatest cloud
height considered (15 km) [43]. By doing so, the cloudiness
values of the pixels on the way from (X, Y) to (PX , PY ) are
evaluated and the average of those values is stored.

However, the CCF can vary widely over time when clouds
are present on the map. To reduce this variation, a smoothing
procedure based on a parameter called uncertainty threshold
(u) is applied. This variable is used to expand the selected
area in every direction, selecting a larger area on the map to
obtain a greater number of pixels that provides a smoother
variation of CCF values and enables the identification of the
type of the day. The value of u is selected through an iterative
process in which the threshold is gradually increased, i.e. the
selected area on the map is expanded. The process terminates
when the CCF variation is smooth and its value is consis-
tent with the GHI measured. The value of u that minimizes
the forecasting error was set to 8 pixels, covering an area
of 20 km.

FIGURE 3. Relevant variables for the CCF assessment with respect to the
sun position and the site location.

IV. HYBRID APPROACH FOR THE HOURLY GHI
FORECASTING
In this section, the similar hour-based and ANN-based meth-
ods comprising the hybrid approach for GHI forecasting are
explained.

A. SIMILAR HOUR-BASED APPROACH
The underlying behaviour behind meteorological events is
difficult to model although it can be assumed that weather
conditions repeat themselves in time. Therefore, searching
for similarities is the key to predicting when certain weather
conditions will repeat in the future.

A similar day-based approach intrinsically considers the
weather conditions of a whole day to forecast the GHI in
a moment of the day. Since the weather conditions do not
follow a marked trend during the day, it seems perfectly
reasonable to use the meteorological variables forecast at
the target hour for similarity matching. Furthermore, if the
candidates for the similarity study also depend on the extra-
terrestrial radiation, which replaces the conventional time
variables for the day and hour, the number of potential hours
to be considered is significantly increased.

In the model proposed in this paper, for similarity match-
ing, a time-window of three hours around the forecast hour
is considered, because the distance travelled by the sunlight
through the atmosphere depends on the position of the sun in
the sky (elevation and azimuth) which, in turn, influences in
the GHI loss variation Therefore, the same hour as that of the
target hour along with the adjacent hours, i.e. the previous
and the following one, are extracted from each day in the
historical dataset since these hours are similar in terms of the
sun’s position in the sky. The Sun position for a particular
hour progressively changes as the days go by, becoming
closer to the Sun position for the adjacent hours. However,
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FIGURE 4. Flowchart of the proposed similar-hour based forecasting
algorithm for a day-ahead prediction.

this strategy requires the removal of the hours with highly
dissimilar values for the extra-terrestrial radiation. To that
end, only the hours with values for the extra-terrestrial radi-
ation, within a range of ±10% from that of the forecast hour
are selected as potential candidates for similar hours. This
strategy is referred to as similar hour-based approach in this
work, and it makes a significant difference with respect to
the day-based version. This is one of the main contributions
of this paper since, to the best of the author’s knowledge, this
is the first time this approach has been used for irradiance
forecasting. This algorithm, in contrast to the similar day-
based methods, uses extra-terrestrial radiation to filter the
most important time instants for the prediction, and delivers
outstanding results in the early stage of the VPP node. Fur-
thermore, the accuracy of this method is improved as new
VPP nodes are aggregated, reducing the global error to a
greater extent compared to other forecasting techniques.

The similar hour-based methodology is depicted in the
flowchart of Fig. 4. Once the candidate hours (c) have been
chosen from the historical dataset (z), the algorithm searches
for similarities with the forecast hour (t) in terms of the
CCF and temperature (T ). Temperatures annually vary from
minimum values in winter to maximum values in summer.
Needless to say, the further back in time the potential candi-
dates for similar hour are located, the less likely it is that the
hours become similar hours.

The Euclidean distance (ED) is used as a measure of
similarity. Firstly, the difference vectors (D) are obtained by
evaluating the differences between themeteorological param-
eters, i.e. the CCF and the temperature (T ), for the forecast
hour (t) and those from the candidate hours (c). As justified

above, the adjacent hours, i.e. (t − 1) and (t + 1), to the
forecast hour (t) for the difference vector (D) calculation are
also considered. As a result, a total of 6 variables are evaluated
for the difference vectors (D), whose contribution to the simi-
larity matching process is not, however, the same. Therefore,
in a second step, a set of weights (ω), representing the relative
importance the similar hour-based algorithm gives to each
difference vector (D), is used. The selection of theweights (ω)
is based on the principle of minimum error for the historical
dataset of past forecasts, which are updated daily. Finally,
the Euclidean weighted distance (ED) is calculated to find the
most similar hours in the past to the forecast hour (t). Since
NWP models have an inherent error that can adversely affect
the forecast accuracy, the irradiance of the three candidates
with the smallest Euclidean distance (ED) are averaged and
taken as the final solution. Before the average can be calcu-
lated, an adjustment in the values of the irradiance of the three
candidates is necessary. This adjustment is proportional to the
difference between the extra-terrestrial radiation (E) for the
chosen hour and that of the forecast hour (t). The algorithm
iteratively repeats the similarity matching as long as the extra-
terrestrial radiation (E) is greater than zero for the forecast
hour (t).

B. ARTIFICIAL NEURAL NETWORK FORECASTING
The second forecast method making up the hybrid approach
consists of an ANN, which produces accurate forecasts from
extensive datasets. This clearly complements the similar
hour-based method, which yields better results for a reduced
dataset for which the ANN performance is only moderate.
In this work, a multilayer perceptron (MLP) has been devel-
oped due to its simplicity and good overall performance. This
type of ANN is the most widely used technique for day-
ahead irradiance forecasting [44], excluding RNN because
the time horizon is too large for a proper forecast using the
observations as input [45] and the length of the dataset is too
short to obtain patterns in a day-ahead forecasting [32].

The neural network has three layers: (i) an input layer has
7 neurons one for each predictor variable, namely, the CCF
and the temperature at the time (t−1), t and (t+1), being t the
forecast time, and the extra-terrestrial radiation; (ii) a hidden
layer with 10 neurons which minimizes the forecast error
by using a logarithmic sigmoidal activation function; and
(iii) and output layer with one neuron with a linear transfer
function which provides hourly GHI forecasting values.

The dataset comprises data from December 4th, 2019 to
May 31st, 2020. To simulate the real scenario of the initial
stage of a VPP, the ANN is trained daily with the historical
dataset collected to the date under consideration. For opera-
tional purposes, the minimum amount of days in the dataset
is established as 7 and the training and validation process
is repeated every day. Consequently, the training dataset is
variable and increases as the VPP operation time increases
and more data is available.

The number of hidden layers is evaluated through cross-
validation using the dataset available. Adding more layers
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TABLE 1. MLP ANN characteristics of the hybrid method forecasting.

does not yield better results, but instead increases compu-
tational time. The Levenberg-Marquardt (LM) algorithm is
used for the ANN learning process, because it ensures greater
accuracy in comparison to other alternatives such as LM,
Bayesian Regularization (BR) and Scaled Conjugate Gradi-
ent (SCG).

A sensitivity analysis of the ANN has also been carried
out, to determine the relationship between the inputs and the
output. As is to be expected, the extra-terrestrial radiation
provides the greatest amount of information. The CCF is
the second most important input, followed by the temperature
(T). Temperature measured at time instants (t+1) and (t-1)
are also relevant on account of the different patterns during
mornings and evenings: depending on the temperature gradi-
ent, the ANN can recognize both periods of time.

To achieve better generalization, a popular technique in the
context of short dataset is implemented, [32], [46]. It consists
in training several independent ANNs for the same target
variable. The average of the outputs of the set of independent
ANNs is taken as the final prediction. Assuming that the error
follows a normal distributionN (µ, σ )∼N (0, 1), the average
of the output values of up to 30 independent ANNs allows the
prediction to be correctly validated. The characteristics of the
ANN are summarized in Table 1.

C. COMBINING THE SIMILAR HOUR-BASED ALGORITHM
WITH ANN-BASED FORECASTING
Once the forecasting methods have been introduced,
the hybrid approach is explained in this section. The hybrid
method consists in evaluating the final prediction as a
weighted value of the individual forecasting outputs as shown
in (4). The weights are determined as a function of the type of
the day (sunny, cloudy and overcast), which depends on the
values of the CCF at the forecast hour. By using the k-nearest

neighbors (k-NN) algorithm, the days are classified taking
into account the CCF and the corresponding set of weights
are associated with the type of day. This simple classification
algorithm allows the weight selection to be carried out auto-
matically and independently for each site, selecting the set of
weights that minimizes the MAE of previous forecasts.

GHI = ωSHGHISH + (1− ωSH )GHIANN (4)

The weights are updated daily for each type of day to
optimize the final forecast. The historical data for the weight
evaluation consists of up to a 2-month slide window with the
most recent data. There are two reasons behind this value for
the window width: (a) ANN performance improves as more
data is available, which means that previous forecast should
be disregarded; (b) it is expected that the strong seasonality
in the weather directly influences the weights.

The novelty of the hybrid approach lies in the development
of a model which has the ability to adapt itself to the amount
of historical data. As previously stated, for a reduced dataset,
the similar hour-basedmethod outperformsANN-based strat-
egy, whereas the converse applies for larger datasets. Com-
bining both methods, therefore, an accurate prediction can be
obtained irrespective of the size of the dataset.

Initially, the similar hour-based forecasting output has a
great influence on the prediction because this method con-
siders extra-terrestrial radiation to filter the most important
time instants for the prediction. When more data is available,
the ANN-based forecasting gains more influence. In this way,
a smooth transition of the weights is achieved.

V. RESULTS
This section presents the results obtained from the implemen-
tation of the similar hour-based and hybrid GHI forecasting
strategies in two different scenarios: firstly, the approach is
applied to an experimental setup (a real PV installation) that
plays the role of a VPP node; and secondly, an aggregation of
different PV installations in the shape of ground-basedmeteo-
rological stations making up a VPP, is considered. The results
from using other techniques, such as the persistence model,
the similar day-based approach and neural networks, are also
included for comparison purposes, proving the effectiveness
of the proposed approaches.

A. EVALUATION OF THE HYBRID FORECASTING
APPROACH FOR A REAL VPP NODE
To validate the proposed algorithm in the context of a single
VPP node scenario, measurements taken from a recently
installed photovoltaic facility located at the Polytechnic
School of the University of Alcalá (Spain) are used. These
measurements, mainly comprising GHI and temperature val-
ues, were recorded during the period between December 4th,
2019 to May 31st, 2020, and constitute the 6-month period
of historical dataset for the algorithm validation. The first
forecast is provided by using only a week of the historical
dataset, which allows GHI predictions to be made from the
earliest stages of the VPP node operation. The 24-hour ahead
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GHI forecasting process is repeated on a daily basis, updating
the data used in the process, with the collected data of that day.
This process is carried out until all the data in the historical
dataset is used. In this way, the performance of the prediction
algorithm is assessed daily starting from the second week of
the PV system operation until the 6-month period is covered.

To analyse the accuracy of the prediction algorithm,
the overall error is calculated using the following perfor-
mance indicators:

MAPE =

1
T

T∑
t=1

∣∣∣Yt − Ŷt ∣∣∣
1
T

T∑
t=1

Yt

100[%] (5)

NRMSE =

√
1
T

T∑
t=1

(Yt − Ŷt )
2

1
T

T∑
t=1

Yt

100[%] (6)

where Yt is the measured data, Ŷt is the forecast value and
T is the length of the time series. MAPE shows the nor-
malized average error between the measurements and the
forecast, while NRMSE represents the normalized square
error. The normalisation parameter used is the average of
the measurements. Normalized indicators are used due to the
fact that they allow a fair comparison of the results obtained
as the validation is developed, since the dependence on the
magnitude is removed. The use of both indicators is justified
on the grounds that NRMSE is more sensitive to outliers than
MAPE, which allows for a more comprehensive comparative
study to be carried out.

In order to validate the benefits of the proposed forecasting
strategy, described in section IV-C, a comparison is made
with other widely used forecasting methods, as well as with
the proposed similar hour-based approach. The following
methods are analysed:

• Persistence model: it is the simplest method which
assumes that the 24-hour ahead GHI forecast is equal
to the GHI measurements taken the previous day [32].

• Similar day-based approach: this method calculates the
difference vectors for the CCF and the temperature
considering the weather forecasting of the day to be
predicted and the previous 14 days within the historical
dataset. The selection of the number of days is not arbi-
trary and aims at minimizing the error. The Euclidean
distance of all the difference vectors is then calculated
for each of the 14 days and the day that minimizes this
distance is chosen as the following day’s GHI prediction
[47], [48].

• Proposed similar hour-based algorithm, which is
described in detail in Section IV-A and separately imple-
mented without hybridization.

• ANN-based forecasting approach, described in
Section IV-B, and individually evaluated.

FIGURE 5. Forecasting errors of the methods under study (persistence,
similar day, similar hour, neural network and hybrid model proposed) for
the Alcala University site in terms of (a) MAPE and (b) NRMSE.

• Proposed Hybrid approach, described in detail in
Section IV-C.

Fig. 5 depicts the forecast errors, using the MAPE and
NRMSE indexes, depending on the days from the historical
dataset employed. In order to improve the graph visualization,
the highest errors made by certain forecasting methods when
implemented for a reduced amount of historical data, are
neglected. The maximum values in the neglected period for
the persistence model, and similar day-based and ANN-based
approaches are for the MAPE = [96.8 66.2 69.7] and for the
NRMSE = [126.2 116.4 85.1].

From the figure it can be seen that the persistence method,
on account of its simplicity, is the one that introduces
the greatest error. The similar day-based forecast signifi-
cantly improves the persistence prediction achieving a similar
degree of accuracy to that of the ANN-based forecast for a
reduced amount of historical data. However, as more data
is available, the performance enhancement of the ANN is
noticeable, especially with respect to that of similar day-
based forecasting. The proposed similar hour-based method
performs much better than the other methods in the case
where little historical data is available. As the amount of
historical data increases, it can be appreciated that its per-
formance keeps improving relative to the similar day-based
approach, and with similar accuracy to that of the ANN-based
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FIGURE 6. Weights used in the hybrid method for the ANN as a function
of the number of days in the historical dataset, for the Alcala University
site. It can be seen that the weights progressively give more importance
to the ANN output, following a marked trend.

method. On the other hand, the ANN-based forecasts deliver
better results than the similar hour-based method when a
sufficiently extensive historical dataset is available, this being
the reason that the ANN can generalize better. Finally,
the hybrid method presented in this paper practically out-
performs all the previous ones irrespective of the amount of
data, because it manages to combine the advantages of neural
networks and the similar hour matching.

The proposed hybrid method has been adjusted for dif-
ferent weights depending on the type of day as described
in section 4.3. These weights evolve as the historical record
increases as shown in Fig. 6.

Fig. 6 demonstrates how, as the historical dataset increases,
the neuronal network carries more weight in the final pre-
diction. This is justified by analysing Fig. 5(a), in which
the accuracy of the ANN-based technique compared to that
of the similar hour-based approach, gradually improves as
the amount of historical data increases. This effect is more
significant on cloudy and overcast days, since on clear sky
days the performance of the similar hour-based technique is
slightly better than that of the ANN-based approach. This

evolution is noticeable by analyzing the mean weight of the
three day types in which the initial weight associated to the
ANN output starts from approximatelyωANN= 0.04 reaching
up to approximately ωANN= 0.51 when the total historical
dataset is completed.

Finally, Fig. 7 shows the GHI forecasting output of each
method for three consecutive days between 14th and 16th
March 2020. These days have been deliberately chosen
because they represent the three types of day considered in the
hybrid method. Moreover, in this case, approximately half of
the historical dataset is employed, 102 days. It is observed that
the error produced by all the forecasting methods increases
as the cloudiness grows. This is because cloudy days are
the most complicated to forecast since clouds have a strong
impact on the GHI and it is difficult to predict their exact loca-
tion for a 24-hour horizon. However, it can be seen from the
results, that with the proposed hybrid strategy a considerable
improvement in the forecast accuracy is achieved.

FIGURE 7. GHI forecasting values at the Alcala University site for the
different methods, over three consecutive days, showing different
weather conditions.

B. EVALUATION OF THE HYBRID FORECASTING
APPROACH FOR AN EMULATED VPP
The potential of the proposed forecasting algorithms having
already been demonstrated for a single photovoltaic instal-
lation, i.e. a single VPP node, in this section additional
improvements are described for a set of photovoltaic facili-
ties, grouped under the concept of VPP. As no additional pho-
tovoltaic installations are currently available, 6 ground-based
meteorological stations located in the Community of Madrid
in Spain (see Fig. 8) are used to emulate the new nodes.
This is possible because meteorological stations publish, free
of charge, all the required data utilized in the forecasting
approach. The location of the stations is depicted in Fig. 8.

As in the previous section, theMAPE and NRMSE indexes
are used to quantify the accuracy of the forecast outcomes
for all the methods previously presented. The main difference
is that in this case, once the GHI forecasts are produced for
each station, all the VPP GHI variables are calculated by
adding the corresponding GHI forecasts from each station,
including the PV installation. In this way, the individual GHI
measurements taken at each station, i.e. node of the VPP, are
compared to the total GHI forecast.

Fig. 9 displays the evolution of the GHI forecasting error,
for the ensemble of stations, quantified by the MAPE and
NRMSE indexes. As depicted in Fig. 5, the graphs do not
show the highest errors made by certain methods for the
reason stated above. The maximum values in this omitted
area for the persistence model, and for the similar day-based
and ANN-based approaches are MAPE = [93.263.5 62.8]
and NRMSE = [119.7 110.774.5]. As in the case of a single
installation, it can be seen that the persistencemethod exhibits
the poorest performance followed by the similar day-based
approach. TheANN-basedmethod improves as the amount of
historical data increases. In this case, however, it is not able
to outperform the proposed method based on similar hours,
irrespective the number of the days in the historical dataset.
The novel methods proposed in this paper, i.e. similar hour-
based and hybrid, achieve the highest accuracy regardless of
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FIGURE 8. Location of the different ground-based meteorological
stations in the Community of Madrid used in the study.

the number of days in the dataset, with the exception of the
hybrid method, in which accuracy slightly increases as the
historical dataset builds up.

To analyze the improvement of the proposed forecasting
algorithms within the VPP scheme, the results obtained in
each node are presented in Table 2. It can be appreciated
that all the nodes in the VPP based on the meteorological
stations, have similar performance to the one of the PV
installation shown in Section V-A, in which the method based
on similar hours introduces higher forecast error, in terms of
MAPE and NRMSE, than the method based on ANNs when
there is enough historical data available. However, when
the similar hour-based GHI forecast for the entire VPP is
calculated, the deviations from the GHI actual values, in the
individual predictions for each node, tend to be compen-
sated to a greater extent than when the ANN-based method
is used.

This is because the method based on similar hours gen-
eralizes as a function of the node being considered and,
consequently it can be assumed that the forecast errors follow
different distributions. This makes certain errors partially
compensate with each other when the GHI forecasts of the
ensemble of VPP nodes are added. In contrast to the similar
hour-based algorithm, in the ANN-based model the rela-
tionship between the inputs and the output identifies similar
GHI patterns irrespective of the VPP node and, as a result,
no error compensation takes place. The MAPE reduction
of the similar hour-based strategy comparing the arithmetic
mean of the 7 VPP nodes and the whole VPP is 3.31%, and in
the case of NRMSE is 5.40%. As for the neural networks the

FIGURE 9. Forecasting error of the methods under study (persistence,
similar day, similar hour, neural network and hybrid model proposed) for
the VPP in terms of (a) MAPE and (b) NRMSE.

reduction is 1.58% for theMAPE and 2.53% for the NRMSE.
In the hybrid method, this reduction ranges between the two
previous values as expected, 2.38% for the MAPE and 3.75%
for the NRMSE.

Fig. 10 presents the average weight of all the nodes con-
sidered according to the historical dataset and the type of
day. Although this average weight is not directly applied,
because the set of weights for each VPP node are calculated
individually, it provides an insight about how the weights
for the different nodes evolve. It can be appreciated that this
evolution is very similar to that of a single node shown in the
Fig. 6. The mean weight for the three day types and the 7 VPP
nodes evolves from an initial weight of ωANN = 0.10 to
approximately ωANN = 0.60 when the total historical dataset
is completed.

Finally, Fig. 11 shows the GHI forecasting for the entire
VPP and for each method considering three days of the
historical dataset: from 14th to 16th March 2020. These days
are representative of the three types of day considered in
the hybrid method. As in the case of one VPP node, it can
be seen that the error produced in all the forecasting meth-
ods increases as the cloudiness grows. However, it can be
observed to what extent, better forecasts are obtained with
the proposed methods.
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TABLE 2. Quantification of MAPE and NRMSE after 180 days of historical data.

FIGURE 10. ANN mean weight for the VPP as a function of the day type
and the historical data. It can be seen that weights give progressively
more importance to the forecast provided by the ANN.

FIGURE 11. GHI accumulated forecasting in the VPP for the different
methods and for three consecutive days, showing different weather
conditions.

C. UNCERTAINTY QUANTIFICATION
It is very important to specify a probabilistic range for the
predictions, in order to assess the degree of uncertainty. To
this purpose, in this section, statistical prediction intervals are
considered based on the work carried out in [49].

Firstly, the dataset is split into 10 subsets as a function of
the CCF. Looking at the error distribution of the hybrid-based
forecast in Fig. 12, a Laplacian distribution can be reasonably
assumed for each subset. Secondly, under this assumption,
a prediction interval for each subset is defined, Ipred±ps,

FIGURE 12. Distribution of the error for every subset considered.
To create prediction intervals in the forecasting strategy, a Laplace
distribution is assumed.

TABLE 3. Prediction intervals (ps) for each subset and for the whole
dataset, and their PICP.

in terms of the MAE, and the percentile p of probability
(1−s) is considered, knowing that ps= ±MAE . ln (2s) for a
Laplacian distribution.

In this particular case, the reliability of the prediction inter-
val under a confidence value of 60%(s = 0.2), is evaluated.
The prediction interval, ps, which is determined as a function
of the MAE of each subset, is then calculated. With this
interval, the Prediction Interval Coverage Probability (PICP)
[50], can be worked out. The PICP indicates the percentage
of values that are inside the interval, and it needs to be close
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to the confidence level.

PICP =
1
T

T∑
t=1

εt ,whereεi =

{
1 if xi ∈ [Li,Ui]
0 if xi /∈ [Li,Ui]

(7)

In Table 3, it can be observed that the PICP is close to the
confidence level for every subset. It can also be appreciated
that the prediction interval increases with the presence of
clouds, showing that overcast days are the most difficult days
to forecast.

VI. CONCLUSION
Solar irradiance forecasts are of paramount importance for
the integration of PV systems in a VPP in an effective way.
However accurate irradiance predictions generally rely on
extensive datasets, which are not always available when a
VPP begins operating or when a new VPP is first integrated.
Furthermore, data access usually carries a cost, which is
driven up as the number of VPP increases leading to a decline
in profits. There is not a simple way to overcome these lim-
itations with only one approach which performs efficiently
irrespective of the dataset size. For this reason, this paper
presents a hybrid approach comprising two methods based
on similar hours and ANNs. The outputs of both forecasting
methods are dynamically weighted, according to the type
of the day (sunny, cloudy and overcast) and the MAE. The
proposed forecasting approach uses temperature and cloudi-
ness forecast maps freely generated by the AEMET via NWP
alongwith irradiancemeasurements obtained from both a real
PV installation located in the Polytechnic School of Alcala
University and a group of different ground-basedmeteorolog-
ical stations operating in the Community of Madrid (Spain).
Both, the similar hour-based approach and the hybrid method
have demonstrated better performance than widely employed
forecasting techniques, namely persistence method, and sim-
ilar day-based and ANN-based approaches, when limited
historical data is available. For a 7-node VPP configuration
and for a 6-month period of historical data, a MAPE of
21.64% and a NRMSE of 31.69% for the similar hour-based
technique, and a MAPE of 21.37% and a NRMSE of 30.99%
for the hybrid strategy are obtained.

Under a reduced historical dataset, the results show that
the proposed similar hour-based method produces the best
forecasts relative to those obtained by the ANN-based
approach. For one-month and two-month datasets the mean
error is reduced by 16.32% and 9.07% respectively. Finally,
to demonstrate the potential of the proposed approach, a com-
parative analysis between the hybrid method and the most
commonly used benchmarks in the literature, namely, the per-
sistence method and the method based on similar days, has
been carried out. It has been concluded that the proposed
model yields promising results regardless the length of the
historical dataset.

Future work will address the estimation of the power gen-
erated by the PV facilities within the structure of the VPP.
To this end, the forecasting techniques presented in this paper

will be used, weighting each station according to the rated
power. Finally, as the historical dataset of the installation
increases in length, the computational time of the algorithm
will grow in importance, augmenting the interest in the imple-
mentation of advance optimization techniques for some steps
in the algorithm such as the calculation of the weights.
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ABSTRACT Since the advent of the microgrid (MG) concept, almost two decades ago, the energy sector
has evolved from a centralized operational approach to a distributed generation paradigm challenged by
the increasing number of distributed energy resources (DERs) mainly based on renewable energy. This
has encouraged new business models and management strategies looking for a balance between energy
generation and consumption, and promoting an efficient utilization of energy resources within MGs and
minimizing costs for the market participants. In this context, this paper introduces an efficient management
strategy, which is aimed at obtaining a fair division of costs billed by the utilities, without relying on a
centralized utility or MG aggregator, through the design of a local event-based energy market within theMG.
This event-drivenMG energy market operates with blockchain (BC) technology based on smart contracts for
electricity transactions to both guarantee veracity and immutability of the data and automate the transactions.
The event-based energy market approach focuses on two of the design limitations of BC, namely the amount
of information to be stored and the computational burden, which are significantly reduced while maintaining
a high level of performance. Furthermore, the prosumer data is obtained by using IEC 61850 standard-based
commands within the BC framework. By doing so, the system is compatible with any device irrespective
of the manufacturer implementing the IEC 61850 standard. The advantages of this management approach
are considerable for: MG participants, in terms of financial benefits; the MG itself, as it can operate more
independently from the main grid; and the grid since the MG becomes less unpredictable due to the internal
energy exchanges. The proposed strategy is validated on an experimental setup employing low-cost devices.

INDEX TERMS Blockchain, distributed generation, local energy market, prosumer, smart contract, Trans-
active Energy, aperiodic strategy.

NOMENCLATURE
Most of the symbols and notations used throughout this paper
are defined below for quick reference. Others are defined
following their first appearances, as needed.

A. ABBREVIATIONS & INDICES
MG Microgrid
BC Blockchain
SC Smart Contract

The associate editor coordinating the review of this manuscript and
approving it for publication was Jiayong Li.

EMS Energy Management System
SBC Single Board Computer
LD Logical Device
LN Logical Node
SoD Send on Delta
SD Standard Deviation
i Index of prosumer of the Microgrid
t Index of time
k Index of aperiodic update
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B. PARAMETERS
PV i(t) PV power of prosumer i in theMG at instant t
Demand i(t) Inflexible demand of prosumer i in the MG

at instant t
Load i(t) Controllable load of prosumer i in the MG at

instant t
Power i(t) Balance of power of prosumer i in the MG at

instant t
Energyi(t) Balance of energy of prosumer i in the last

minute in the MG at instant t
ρMG(t) Ratio between PVMG(t) and at

DemandMG(t) at instant t
Pricebuy(t) Energy acquisition cost from the grid.

Pricesell(t) Price offered by the grid for energy injection.
PriceMG(t) Price of the energy in the MG.
Gapprice(t) Price gap between buying and selling to the

grid.
αprice(t) Price factor applied in the MG
ti,k Update time instant k of prosumer i.
1SoD Threshold Send on Delta.
Errori(t) Energy estimation error of prosumer i in the

last minute at instant t.
sizeround Stored memory per market round.
sizetx Stored memory per transaction.

I. INTRODUCTION
In recent years, the rapid expansion of Distributed Energy
Resources (DERs), mainly based on renewable energy
sources, has transformed the electrical power system result-
ing in reductions of greenhouse gas emissions and electricity
costs, and mitigating adverse impacts on the power system
such as overload on the main grid and transmission loss [1].

Increasing deployment of DERs which include some intel-
ligence has changed the role traditional consumers play in
the electrical power system, leading to a new actor that not
only consumes but also produces electricity and maybe has
demand response capabilities by means of some controllable
loads and storage units [2]. This new actor in the electricity
market is known as a prosumer that can be an energy provider
or a consumer according to its local energy balance. Pro-
sumers, as an entity, may consist of a combination of energy
sources, loads, and storage capacity, and they seek to optimize
economic decisions regarding their energy balance [3].

The integration of large amounts of prosumers, usually
with low and unpredictable power generation capacity and
electricity demand, is changing the traditional approach of
power systems, which is posing new challenges [4], and
creating new opportunities for the generation and distribu-
tion operators and for the electricity market. The traditional
centralized concept of the grid has given way to a complete
decentralized strategy where several prosumers are intercon-
nected and locally managed being seen by the utility grid as a
controllable load or generator. Microgrids (MGs) epitomize
this concept, which was first introduced in [5]. MGs facilitate

the integration of DERs, without compromising the resilience
of the main grid, creating opportunities for new economic
models such as electricity trading, which can take place not
only between MGs and utilities, but also among multiple
prosumers, through a local energy market. They also promote
the development of control systems that allow plug & play
capabilities to face the ever-changing MG architecture.

This new concept, which challenges also the traditional
business models, required a comprehensive framework with
the aim of determining the electricity prices and defining the
new business players and models, such as peer-to-peer frame-
works for locally energy trading and transactions. In this con-
text, prosumers try to maximize their profit by selling their
surplus energy and the grid aims at maximizing efficiency.

To address these challenges, several works can be found
in the literature proposing different solutions mainly based
on centralized and distributed energy management systems
(EMSs). Regarding the former, in [6] and [7] MGs are con-
sidered as scaled-down versions of the centralized electricity
system and the EMS is defined accordingly. Centralized MG
management and control suffers from drawbacks in terms
of: (a) the need for a MG central controller with high com-
putational capabilities, due to the amount of controllable
resources, (b) lack of scalability since a small change in
one node affects the central controller; and (c) privacy [8]
as customers may not be willing to share their private data.
Finally, all the information must be integrated and processed
at a single point, which also results in reliability and security
vulnerability of the central controller [9].

To overcome the drawbacks of the centralized methods,
new EMS designs have been developed in a distributed
fashion. For instance, in [10] authors simulate a MG with
a distributed EMS achieving comparable performance with
respect to the centralized counterpart. In [8] an example of
distributed EMS, which includes a MG central controller
(MGCC) operating in conjunction with the local controllers,
is presented. However, this combined approach does not elim-
inate the vulnerability of a single point of failure.

The creation of local energy markets, that allow con-
sumers and prosumers to trade energy, has been studied in
the literature [11] as a way of decentralized management in
MG. In local energy markets, prosumers try to match supply
and demand by seeking competitive electricity prices, which
results in greater resilience. The Brooklyn Microgrid [6] is
one of the most known projects for the implementation of
MG local energy market, which confirms the economic and
technical feasibility of decentralized strategies. In [12], the
concept of local energy market is taken one step further
by interconnecting several geographically close MGs, which
allows the surplus and deficit of energy to be exchanged in
a neighboring market. This further reduces the dependency
on the main grid and, as a result, increases the resilience of
the MGs.

This paper introduces a novel event-based local energy
management strategy for MGs. The design, development and
implementation of the strategy is based on the combination
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of the BC technology and the IEC 61850 communication
standard, enhancing the capabilities of both technologies
when applied to energy-sector applications. BC technol-
ogy is used to create a local energy market in a decen-
tralized fashion, which has been proved to be remarkably
resilient to failure and cannot be maliciously manipulated as
it maintains a detailed record of past transactions that cannot
be changed retrospectively. Furthermore, executable code
embedded in the BC, which is called the smart contract (SC),
allows the entire process to be automated [13]. Likewise, the
BC-based local energy market is standardized by using the
IEC 61850 communication protocol. The strong point of this
approach is that the electrical parameters of all MG resources
can be automatically obtained without the involvement of the
resource owners, which avoidsmanipulation of those parame-
ters for their own advantage. To the best of the author’s knowl-
edge, this is the first local energy market implementation that
combines the IEC 61850 and BC technologywhereby devices
commercialized by diverse manufacturers can be seamlessly
integrated in the market, in a plug & play fashion, which
approaches to a real project. Research works in this topic are
non-existent.

The main contributions of this paper are summarized as
follows:
1. Integration of the IEC 61850 standard into the Smart

Contracts of the BC. This enables the distributed com-
munication between the commercial devices implement-
ing the standard.

2. A reduction in the amount of resources required to
create a local distributed energy market by means of
event-based techniques which do not negatively affect
the system performance. This allows the system to oper-
ate efficiently for a greater number of years.

3. Low-cost hardware implementation of the system, which
decreases the time for the return on the investment mak-
ing it feasible to use it in residential environments.

4. For both energy producers and consumers, the devel-
opment of a win-win market strategy within the MG
allows financial savings to be obtained by taking advan-
tage of the gap between the price paid for the elec-
tricity consumed and that generated and injected to the
grid.

The paper is organized as follows: Section II describes
the underlying technologies employed in the local energy
market design, namely BC and IEC 61850 communica-
tion standard and the advantages that they can bring to
the energy sector in general and to MGs in particular.
Section III shows the advantages of the combination of both
technologies. Section IV describes the design of proposed
prosumer-basedmicrogrid. Section V presents the implemen-
tation of the proposed BC-IEC 61850 network, analysing the
required resources for its correct operation. In section VI,
the system is tested in a specific case of use. Finally,
in Section VII, the conclusions and the future work are
outlined.

II. LITERATURE REVIEW: STATE OF THE UNDERLYING
TECHNOLOGIES
Vast literature has been published on BC technology and IEC
61850 communication standard separately. However, the lit-
erature lacks references considering both technologies work-
ing together. This paper aims at filling this gap. In this section
a literature review of the two technologies mentioned above,
is carried out. Being two of the most researched technologies
and with the aim of narrowing the search, this section only
deals with the most recent and up to date works in the context
of the energy sector and MG.

A. BLOCKCHAIN TECHNOLOGY IN MICROGRIDS
BC is the technology behind Bitcoin cryptocurrency, created
in 2008 by Shatoshi Nakamoto [14]. This disruptive tech-
nology is based on decentralized computation with secure
storage and transactions. BC has evolved since then, and
these days, BC is being widely used in fields, such as, trans-
portation systems [7], IoT [8], financial sector [9], electric
vehicle charging and e-mobility [10], and the energy sector
in general [15], inter alia.

BC can be briefly defined as a decentralized informa-
tion network with a distributed computing paradigm, which
means that there is not a master computer compiling and
processing the information. BC is based on a distributed
ledger which guarantees the immutability of stored data and
the availability of the latest version in each node of the net-
work. To that end, BC employs chronological, chained blocks
to store encrypted data generated by distributed consensus
algorithms. Therefore, blocks record transactions, i.e. actions
created by the BC participants, and ensure that they are in
the correct sequence and have not been tampered with. This
is achieved by linking each new block with all the previous
ones through an ID that is unique and dependent on the
information contained in the block and the ID of the previous
block. This allows any change in the information contained
in the previous block to be quickly detected and discarded.
Thus, this technology makes it possible to eliminate inter-
mediaries making all the transactions faster and more secure,
as previous records cannot be altered, and they are available
at any time for all the participants in the network. In 2014
the BC technology rapidly evolved with the creation of a
new cryptocurrency, Ethereum [13], which allowed code to
be executed in a decentralized way via the so-called Smart
Contracts.

BC solutions for the energy sector have been proposed
in several works. A comprehensive review of BC activities
and initiatives in the shape of projects and startups in the
energy sector can be found in [15]. The authors argue that the
decentralized features of BC technology facilitate the creation
of trading platforms for billing purposes. They also include
an extensive survey of platforms used to design projects in
the energy sector. In [12], a review of BC-based current
projects and platforms in different domains is carried out.
They determine the requirements of smart energy systems
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with the aim of identifying appropriate BC-based solutions
for smart energy applications. In [6] a case study proves the
effectiveness of BC when it comes to operating decentralized
MG energy markets. The authors in [16] go beyond economic
aspects of energy transactions and, by means of BC tech-
nology, they track energy losses during energy transactions
in MGs.

Distributed Generation, MGs and the implementation of
energy local markets for energy trading call for the use of BC
technology. This will, without doubt, transform the energy
landscape as shown in the literature where numerous projects
under development or in preliminary testing are presented.

B. COMMUNICATIONS STANDARDS: IEC 61850 IN
MICROGRIDS
The IEC 61850-based communication standard has been
universally accepted for substation automation [17]. How-
ever, new parts have been developed and published allowing
the standard to be used as a standard for communication
networks and systems for power utility automation. Most
researchers agree that the future trends are towards standard-
ization through IEC 61850 since it is based on the interoper-
ability approach.

In the context of MGs, efficient and secure communi-
cations among all the nodes become an essential feature.
This is another ongoing research topic as demonstrated by
the numerous papers recently published in the literature.
In [18] an IEC 61850-based energy management system for
emergencies is presented. The paper shows the plug-and-play
capabilities that the IEC 61850 standard can bring, for alter-
native power system operation based on local assets in the
event of an emergency. A review on the evolution ofMG com-
munication approaches is presented in [19], where authors
identify specific communication requirements in MGs such
as reliability, scalability, interoperability and cybersecurity,
which can be fulfilled by the help of the IEC 61850 standard.
An IEC 61850-based model of a MG protection system with
logical nodes and datasets is proposed in [20] which is aimed
at ensuring the protection in a bidirectional system. In [21]
authors propose a standardized communication framework
based on IEC 61850 to manage energy routers and to improve
the operation of MGs achieving the optimal selection of the
power source and routing path. Communications for manage-
ment and control of MGs based on IEC 61850 are designed
and implemented in [22] and [23], proving the effective-
ness and security of the standard when implemented in a
distributed EMS with small end-to-end latency times within
WAN networks. Finally, in [24] IEC 61850 is also used to
improve MG automation, proposing a standard-based model
for controllable loads. Results from the above research works
encourage and support the inclusion of IEC 61850 in MG
management and automation.

In 2009, in response to the increasing number of DERs
aggregated to the grid, part 7-420 [25] was provided, which
standardizes several DERs by using predefined logical nodes
(LNs). Device modelling via LNs helps to simplify the

integration of equipment from different manufacturers. This
significantly facilitates the implementation, as well as the
interconnection of different MGs.

III. HIGHLIGHTS OF THE COMBINED APPROACH
This section highlights the benefits of combining BC technol-
ogy and the IEC 61850 communication standard in MGs.

As stated above, BC technology has prominent features,
such as immutability of the stored data, decentralization,
public ledger facility and security, to name a few. These
inherent features have promoted the use of BC technology
to overcome the main drawbacks of centralized-based EMSs
forMGs. Despite of the obvious benefits derived from the use
of BC technology, there are, however, potential shortcomings
and challenges which stem from the fact that BC is far from
being a mature technology in MG applications [26], [27].

These shortcomings are especially relevant in Prosumer-
based MGs. These MGs are dynamic in nature, where pro-
sumers join or leave the MG. Therefore, the MG changes
its temporal and spatial topology, which poses a challenge.
To face this problem, the proposed BC-IEC 61850 strategy
presents the following features:

1.-Interoperability: equipment and hardware used in MGs
are usually manufactured by different vendors overlooking
the interoperability between these devices. This aspect plays
an important role in producing standardized transactions for
the BC implementation.

2.-Generic plug & play: The design of non-device-specific
SCs provides the capability to add or remove different com-
mercial devices from the MG, introducing the switches auto-
matically to the local energy market.

3.-Veracity: Data acquisition in a distributed manner by
running SC with IEC 61850 communication standard adds an
extra layer of security as it reduces the chances of manipula-
tion with respect to data acquisition locally and subsequent
delivery for storage in the BC.

IV. DESIGN OF THE PROSUMER-BASED MICROGRID
In this section, the proposed prosumer-based architecture for
a MG is introduced. The developed strategy takes advantage
of the fact that prosumers generally have different energy
demand and supply profiles which depend on the prosumers’
energy generation capacity, or whether they have energy stor-
age systems (ESSs) or some controllable loads. This means
that prosumers could draw or inject electricity into the dis-
tribution grid at different times and in different quantities for
profit maximization.

The proposed architecture relies on energy agents repre-
senting prosumers within the MG, which are interconnected
through their own distribution grid. The MG is connected
to the main grid at a single point, through a point of com-
mon coupling, where the amount of energy is measured by
bidirectional smart meters. As the electricity prices vary sub-
stantially over the day, splitting the cost of the bill among pro-
sumers is not straightforward. Local energy markets arise as
a means of overcoming the problem of fair cost sharing, and
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FIGURE 1. BC-IEC 61850-based communication architecture between the
different devices that comprise the MG.

balancing energy consumption and generation curves within
the MG, thereby reducing the amount of energy exchanged
with the main grid.

The objective of the proposed MG is to facilitate the
deployment of clean energy technologies, while eliminating
the potential barrier to achieving fair cost sharing. To address
this, the designed market strategy increases the return on
investment by providing cost savings and increasing profits
e.g. reducing the electricity bill, trading energy surplus, etc.,
for the prosumers participating in theMG. Finally, the privacy
and veracity of the prosumers’ data are guaranteed by com-
bining BC technology and the IEC 61850 communication
standard.

A. COMMUNICATIONS ARCHITECTURE BASED ON BC
AND IEC 61850
In this section, the communication architecture based on BC
and the IEC 61850 standard for the proposed prosumer-based
MG is described. It is assumed that the prosumer’s installed
equipment, i.e. inverters, energy storage elements, smart
meters, controllable switches, etc., complies with the IEC
61850 standard. The IEC 61850 communication standard
works with a client-server structure in which Intelligent Elec-
tronic Devices (IEDs) play the role of a server. The servers
send their data by request of the client. Therefore, an IEC
61850 client is only needed to collect data from these servers.

FIGURE 1 shows the architecture that implements the
communications between the MG prosumers, and combines
BC technology and the IEC 61850 standard. It can be seen
that prosumers are connected to each other through a BC

network. The installed equipment for each prosumer consists
of two types of devices: the IEDs, which are IEC 61850
servers, and a single board computer (SBC) which com-
prises a standard client, a standard server with the installation
model and a BC node. The messages exchanged between
clients and servers are based on the Manufacturing Message
Specification (MMS) protocol whereas those sent by the
server aggregator to the IEDs are based on Generic Object-
Oriented Substation events (GOOSE) with the aim of min-
imising the latency in the installation’s state changes. Both
protocols are based on the IEC 61850 standard. GOOSE
messages are directly transmitted through ethernet packets
with a subscriber-publisher structure and with a maximum
latency of 3 ms [28].

The standard IEC-61850 operation is implemented
in the Prosumer Local Phase (described in detail in
SECTION IV-B-1) in which a client, which runs on a SBC,
constantly reads the prosumer’s IED data. This local client
sends the data to a server aggregator. The proposed aggre-
gator is modelled according to the Smart Home System
proposal [17], in which the SHCT logical node is presented.
This node is based in the IEC-61850 standard and is aimed
at: (i) controlling the installation as a whole (the amount of
energy exchanged with the network and the price of such
exchanges); (ii) switching to the different modes of operation,
i.e. islanded or grid connected; and (iii) defining optional
configurations (voltage and current limits, times at which
different operating modes are allowed, etc.).

The implementation of another IEC 61850 client in the
form of SC can be considered as a novel feature of the pro-
posed system. The execution of this SC results in the acqui-
sition of data from all aggregator servers that are connected
to the MG. This execution occurs automatically whenever an
aggregator detects that the conditions of the installed equip-
ment have changed significantly since the last acquisition.

This SC sends an MMS message to each of the registered
devices and, in response, it receives another MMS message
with the requested data. From this data only those param-
eters affecting the efficient system operation, e.g. energy
generation-consumption balance in the time period since the
last BC register update and the current demand, are included
in the BC immutable database. Furthermore, if the prosumer
has additional generation capacity or conversely load demand
through controllable loads, it sends an offer of the amount of
extra energy it can provide or absorb from the MG.

In this way it is verified that the SC is designed to read any
IED from anymanufacturer that supports the IEC 61850 stan-
dard, acquiring the selected parameters. Moreover, the results
of the local energy market are sent to each SBC through an
MMS message by executing another SC, which acts as IEC
61850-based client updating the data of the server aggregator.
If the server aggregator receives an order to change the state
of the installed equipment, the aggregator sends GOOSE
messages to all the IEDs needed tomake this change possible,
at a given instant of time.
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FIGURE 2. Flowchart representing the tasks prosumers perform both locally in a distributed manner through the SC. Three phases are clearly
differentiated: prosumer local phase, event-based energy market and event-based BC register.

B. EVENT-BASED LOCAL ENERGY MARKET
BC technology relies on an ever-growing distributed
database, which is updated by appending blocks containing
new information. These blocks are sequentially attached to
the end of a file which compiles all the information that was
previously received. As a result, the amount of information
to be stored and transmitted becomes one of the most critical
parameters when it comes to designing a hardware system to
implement the BC.

To meet this challenge and to reduce the communica-
tion within the MG, an event-based local energy market is
designed. This event-driven control approach triggers the
market only when there is a significant change in the energy
exchanges within the MG. Consequently, a significant reduc-
tion in the amount of information to be processed and
sent through the communication channels is achieved, with-
out degrading the system performance. For its operation, a
Send on Delta (SoD) data collecting scheme is chosen for
its simplicity and efficiency [29]. At the prosumer level,
an implementation of SoD monitoring strategy evaluates the
difference between the last-minute energy measurement sent
by the prosumer to the MG and the current measurement.
When the value of this difference is above a certain threshold
level, 1SoD, which is set by the designer, the local energy
market must be updated.

The expression used to calculate the difference mentioned
before is the following:

ti,k=min{t > ti,k−1‖Energyi (t)−Energyi(ti,k−1)|≥1SoD},

(1)

with:

Energyi (t) =
∫ t+1t

t
Power i (t) dt, (2)

Power i (t) = PV i (t)− Demand i (t)− Load i (t) , (3)

1t = 60s, (4)

where ti,k , represents the trigger instant of the prosumer i,
Demand i and Load i are the non-controllable and controllable
load demanded by prosumer i, respectively, PV i is photo-
voltaic energy generated by prosumer i, Power i indicates the
power balance of prosumer i, Energyi (t) is the last minute
energy of the prosumer with respect to instant t in kWh and
1t , is the integration time.

The local trigger of any prosumer leads to a new market
update, thus the market is always distributed and executed
locally to fulfill the decentralized nature of BC technology.
The operation of the proposed event-based local market is
described in detail in the flow chart shown in FIGURE 2. This
flowchart depicts the main tasks of the proposed strategy. The
tasks are carried out in three phases:

1) PROSUMER LOCAL PHASE
The local phase of each prosumer relies on the use of the IEC
61850 communication standard to send the electrical parame-
ters to theMG. Firstly, each prosumer’s SBC locally monitors
its electrical parameters through IEC 61850-based messages.
Through a Manufacturing Message Specification (MMS)
protocol for IEDs, changes in the prosumers’ energy balance,
i.e. changes greater than the aperiodic update threshold1SoD,
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are detected. Whenever the prosumer satisfies the triggering
condition, it is checked whether it is generating more energy
than that consumed. To activate the prosumer’s controllable
loads, a GOOSE message is sent by the aggregator, because
GOOSE messages are significantly faster than MMS mes-
sages. If the prosumer’s energy balance is still positive, the
local energy market is activated by executing a SC that cap-
tures the electrical parameters of all the prosumers within the
MG in a distributed manner. In addition, the SC is also ran-
domly executed by one of the prosumers on an hourly basis,
even though the trigger condition is not satisfied. By doing so,
a record of all the prosumers’ electrical parameters is stored
in the BC, with a dual purpose: firstly, the current MG state
is known beforehand; and secondly the record saved is used
for checking and splitting the billing.

2) EVENT-BASED ENERGY MARKET
The market phase begins when at least one of the prosumers
has a positive energy balance in that instant of time, i.e.,
the prosumer generates more energy than it consumes at
that point in time. The first step in this phase consists in
calculating the price of the energy to be exchanged in the
period considered as detailed in section IV-C In a second step,
it is checked whether the energy the prosumers are injecting
into the MG is greater than that being consumed. If this is
the case, each prosumer with available controllable loads,
submits an offer with the aim of taking advantage of more
economically competitive energy. TheMGmatches the offers
received for the energy surplus generated and sends the offer
matching results to the prosumers so that they can control
the loads based on those results. This is done by sending an
IEC 61850-based message to their IEDs following the MMS
protocol. The process of offer matching takes into account the
current state of the controllable loads, which in the case of
energy storage elements aims at equalizing the energy levels
stored by all the prosumers that comprise the MG.

3) EVENT-BASED BC REGISTER
In this last phase, at the given time points defined by the
two previously described phases, all the electrical parameters
obtained through the IEC 61850 communication standard,
the values of the energy exchanged between the different
prosumers and the corresponding prices, are registered in
an aperiodic fashion in the BC. In this way, the prosumers’
bills for the energy drawn from the grid can be calculated
by considering the price reduction and increase that each
prosumer has to pay for the energy exchanges within the MG.

C. LOCAL ENERGY MARKET STRATEGY
This section describes the developed local energy market
strategy. It is important to know that in most conventional
trading schemes, prosumers have virtually no control of the
trading process of the electricity they generate. Utilities buy
and sell energy to retail prosumers by applying a profitmargin
and a set of taxes and surcharges. This results in a significant
difference between the electricity prices paid to the prosumer

for the electricity injected into the grid and that paid to
purchase electricity from the grid [30]. Since the MG is made
up of prosumers that want to purchase and sell energy at
different times, the proposed local energy market offers more
competitive energy purchase and selling prices than those of
the utilities. Local energy markets are, therefore, beneficial to
their participants provided that the average electricity price is
lower than that set by the main grid.

The proposed market strategy takes advantage of the price
difference between the purchase and sale price of energy to
the grid. The pricing mechanism is based on matching the
purchase and selling offers made by the prosumers for an
amount of energy when the event-based market is activated,
as described in section IV-B. When the market is activated
and the information sent by all the prosumers is available, the
amount of energy delivered and demanded within the MG is
calculated as follows:

DemandMG (t) =
∑N

i=1
Demand i(t), (5)

PVMG (t) =
∑N

i=1
PV i(t), (6)

where N is the number of prosumers in the MG. With this
data, the price of energy in MG is calculated for the amount
of energy available to be exchanged. The market price is set
by the following formula:

PriceMG (t) = Pricesell (t)+ αprice (t) ∗ Gapprice (t) (7)

with:

Gapprice (t) = (Pricebuy (t)− Pricesell(t)) (8)

αprice (t) =

{
(0.5− 0.2ρMG (t)), ρMG (t) < 1
0.3, ρMG (t) ≥ 1

(9)

ρMG (t) =
PVMG (t)− DemandMG(t)

DemandMG(t)
(10)

where ρMG represents the value of the energy ratio between
the PV energy and the demand in the MG. αprice, represents
the price adjustment factor within the MG. For values of
ρMG greater than or equal to 1, this factor is adjusted to 0.3
to set a minimum factor within the MG. Gapprice represents
the difference in price between buying (Pricebuy) and selling
(Pricesell) to the grid. Finally, PriceMG (t), indicates the price
of the surplus PV energy of prosumers that are purchased by
other prosumers within the MG.

Through this formula a win-to-win market strategy is
established for all prosumers due to the fact that prices within
theMGwill include the sale price to the grid plus a part of the
Gapprice whichwill vary between 30% and 70%depending on
the energy ratio ρMG.

Once the price is set, the surplus PV power is assigned to
all the non-controllable loads of the MG. In case the surplus
is not enough for all the loads, it covers the same percentage
of each one of them and the rest of the demanded energy is
consumed from the grid. In this way, each prosumer has a
part of the energy at market price and another part at the grid
price.
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On the other hand, if the surplus is greater than the non-
controllable loads, the transactionswith the controllable loads
are established, proceeding to activate them as indicated in
FIGURE 2. In this case, all the possible loads are activated,
giving priority to the prosumers that have the greatest capac-
ity remaining to be fed.

Finally, if all the available controllable loads are fed and
there is still a surplus power, it will be injected into the main
grid. In this case, the energy not consumed in theMG is sold at
the grid price, the percentage of surplus energy injected to the
grid is calculated and this percentage is applied to the benefit
of each prosumer that is injecting at that moment. This way,
all prosumers with surplus will have the same percentage of
their power injected at MG price and the rest at grid price.

V. IMPLEMENTATION AND PERFORMANCE EVALUATION
OF BLOCKCHAIN-IEC 61850 PROPOSAL
To promote the use of renewable energies, the proposed strat-
egy improves the operation of MG, maximizing the benefit
of all its participants. To this end, it is essential that both the
initial investment and the operational cost of the system are
as low as possible. Consequently, to bring down the cost asso-
ciated with the operation of the hardware system, low-power
consumption strategies are mandatory. Therefore, consensus
algorithms such as Proof of Work (PoW) [31] cannot be
used, since appending new blocks in the BC demands high
computational power, e.g. a node must decipher a crypto-
graphic puzzle, which drives up the cost of the hardware
implementing the node and increases energy consumption.

To select the most suitable technology for the BC intro-
duced in this paper, a comprehensive review of the avail-
able frameworks to implement BC technology has been
conducted. In [15] the underlying technologies employed
in 140 projects that integrate BC technology in the energy
sector are analyzed in detail. For the purposes of this work, the
Hyperledger Fabric [32] is the best option for several reasons,
namely: (a) it allows BC networks to be created in which each
prosumer must be registered to participate; (b) the consensus
algorithm is based on Byzantine Fault Tolerant protocols i.e.
if there is a fault in any of the nodes of the BC network,
it can continue operating without any problem; and most
importantly (c) this framework is open source, which means
that the code is available and can be modified and adapted
to implement new functionalities. This significant advantage
allows ARM-based hardware architectures to be included for
BC implementation. This feature, which is not included in the
original framework, allows the range of potential hardware
components to be extended thereby reducing the cost and the
power consumption of the final system.

A. HARDWARE IMPLEMENTATION
The hardware implementation of the BC network is based on
the Raspberry Pi 4 model B [33], one of the most popular
SBC. The selection is based on comparing performance char-
acteristics through numerous benchmarks which are used to
measure the millions of operations per second (MOPS) the

hardware architecture can perform. Furthermore, the perfor-
mance evaluation can be extrapolated to other architectures.
In [34], an extensive set of tests are performed on the Rasp-
berry Pi.

B. HYPERLEDGER FABRIC
The modular architecture of the Hyperledger Fabric frame-
work [32] makes it possible to implement the energy
exchange system in three phases:

1. The first one consists in building Hyperledger Fabric
Docker images targeted towards hardware architectures
with the 64-bit ARM processor such as Raspberry Pi
devices. In addition, these docker images are modified
to integrate the libiec61850 library [35], required for the
execution of IEC 61850-based clients into the images.
By doing so, the library can be used in the SCs. These
modified images are freely available for download 36].

2. The second phase deals with the process of writing
SC in Go language. Hyperledger Fabric supports Smart
Contracts authored in general-purpose languages such as
Java, Go and Node.js. However, among those languages,
Go allows the use of the most complete and updated
library for the IEC 61850 standard implementation, the
libiec61850 [35], written in C language.

3. Finally, in the last phase, the clients interacting with the
blockchain, are specified in JavaScript. These programs
control the execution of the SCs.

In the Hyperledger Fabric framework, due to its modu-
lar architecture, every node in the system can be individ-
ually modelled displaying unique characteristics. However,
in this work, the nodes comprising the blockchain have been
designed to share the same characteristics thereby achieving
a set of nodes with no priority over each other. Docker
images of peer, those of orderer and an external database
called CouchDB [37] have been integrated, to be able to
submit enriched queries, which facilitates the development
of applications that make use of the stored data.

C. PERFORMANCE EVALUATION
To assess the performance of the approach presented in this
paper, a BC use case is tested, in which the market rounds
happen at five-minute intervals. At the beginning of each
market round, the prosumers send an offer in terms of the
energy they need or the energy surplus they have. Then,
tomatch the offers, a SC is executed, whereby it is determined
whether a particular prosumer has to inject or draw energy
from the grid. Finally, another SC is executed to read, in a
distributed way, the IEC 61850 compatible devices and to
save the data representing the state of the devices during the
interval of time in the BC. By studying the data collected from
the previous use case, the results can be extrapolated to other
time intervals for the market rounds. Tests have also been
carried out for different number of prosumers with the aim of
evaluating the BC-IEC 61850 performance based on the num-
ber of prosumers that make up the MG. With the information
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FIGURE 3. Transaction flow in Hyperledger Fabric framework.

compiled by running the tests, the required resources for
the docker containers making up the nodes (peer, orderer
and CouchDB), in terms of CPU usage, bandwidth, required
storage and latencies are individually evaluated. This allows
prosumers to assess whether to integrate an orderer or just the
peer in their hardware devices reducing the cost of the system
at the expense of affecting performance.

1) HYPERLEDGER FABRIC TRANSACTION FLOW
To gain a better insight into the data obtained, FIGURE 3
schematically shows the flow of information exchange
involved in each transaction for it to be included in the
BC. More detailed information can be found in [32]. From
the figure, it can be seen that, the client application sends
to all the SBCs working as peers, a transaction proposal
created by the Hyperledger Fabric SDK. According to the
endorsement policy that has been established, a subset of
peers has to verify that the transaction is valid. In other words,
each transaction needs only to be endorsed by the subset of
peers required to satisfy the transaction’s endorsement policy.
For the transaction to be valid, the following points must be
proved: (a) the proposal must be well formed; (b) a similar
proposal must not have been completed in the past; (c) the
signature must be valid; and (d) the client requesting the
transaction is authorized to do so.

If the endorsement policy has been satisfied, the client
application submits the transaction to the ordering service,
which establishes consensus on the order of transactions and
creates transaction blocks. A block can be created either when
a predefined period, from the arrival of the first transaction,
has elapsed or when the maximum number of transactions,
the block can contain, has been reached. Once the block is
created, the ordering service is responsible for broadcasting
it to each peer, which append it to the end of their BC.
When the ledger is up to date, a notification is sent to the
client application informing it that the transaction has been
correctly processed or that an error has occurred.

2) CPU
The total CPU usage, which is given by the percentage of
use of one Raspberry Pi core, has been calculated considering
the individual CPU utilization of the docker containers mak-
ing up a BC node. This allows the analysis of the required
resources to be more precise. TABLE 1 shows the minimum

TABLE 1. Minimum and maximum CPU utilization in each test performed
by each docker container.

TABLE 2. Bandwidth needed for the peer and the orderer as a function of
the number of nodes that make up the BC network.

and maximum values of the CPU usage for the tests carried
out for each element.

As for the peers, the maximum CPU usage follows a
logarithmic trend as a function of the nodes connected to the
BC. On the other hand, as far as the orderers are concerned,
the CPU utilization changes slightly as the number of nodes
increases, ranging from 0.15% to 1.07%. The CPU usage by
the external database exhibits similar behavior with values
ranging from 0.69% to 2.49% irrespective of the number of
nodes.

For the worst-case scenario, with a 16-node blockchain and
considering the maximum values of CPU time consumed by
the elements that comprise the node, the CPU usage ratio
just for one core of the 4-core processor, is roughly 9.16%.
Therefore, it can be concluded that the hardware architecture
comfortably meets the computational requirements of the
system, again irrespective of the number of nodes.

3) BANDWIDTH
A similar procedure to that described above, has been fol-
lowed to determine the bandwidth for the effective operation
of the system. In contrast to the CPU usage, peak values for
the bandwidth occur when transactions take place, when the
nodes communicate with each other to validate the transac-
tions, when they are accepted by the BC, and when the nodes
are synchronized with the latest transactions.

As an example, FIGURE 4 shows the required bandwidth
for both sending and receiving data by every peer and orderer
in a 4-node experimental test. It can be observed that a
peak occurs during the insertion of offers by prosumers.
Likewise, a half-period-delayed smaller peak can also be
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FIGURE 4. Bandwidth required by the peer and the orderer for both sending and receiving data in the test performed with four nodes. Every 5
minutes all the users send an offer to the market and in the middle of the period two transactions are made, collecting the data from the IEC 61850
server and matching the offers.

seen, which corresponds to the process of offer matching
and that of reading the prosumers’ IEC 61850 compatible
devices. The magnitude of the peak values for the bandwidth
varies according to the number of nodes making up the
system (see TABLE 2). For the 16-node network, i.e. the
worst-case scenario, the maximum bandwidth measured for
uploading and downloading has been 356 kB/s and 302kB/s,
respectively.

4) REQUIRED STORAGE
The data size in the BC becomes an important parameter
which depends on the structure of the blocks in the Hyper-
ledger Fabric framework [38]. The blocks consist of a header,
a body which is composed of a variable number of transac-
tions and the block metadata.

The number of transactions within a block depends on two
factors, the maximum number of transactions the block can
contain and the waiting time from the arrival of the first trans-
action until the block is formed. The number of transactions
per block has been limited to 10 in this work because this
way the best performance is achieved [38]. The timeout has
been set at 1 second since no minor latencies are required for
the correct operation of the system and the more transactions
that enter the same block, the less storage required. Every
transaction has three parts when it comes to creating a block:
(i) the transaction proposal sent by a peer to endorsing peers;
(ii) the transaction validation by the endorsing peers; and (iii)
the response to the requested transaction by the smart contract
invoked.

The block size has been determined through experiments
on the 16-node blockchain where most of the nodes must ver-
ify the transaction before acceptance. Measurements revealed
a block size ranging from 4 kB for one transaction to 32 kB
for ten transactions.

Each SC execution is considered as a transaction. There-
fore, there are four blocks with only one transaction in each
round: (i) the electrical parameters are registered; (ii) the
market is started (iii) the price is calculated; and (iv) offers are
matched and the results are sent. In addition, users interested
in buying or selling energy on the market send an offer (by the
execution of another SC) simultaneously. This creates new
blocks with a size between 1 and 10 transactions each.

Since the information contained in a transaction (alphanu-
meric data only) is small compared to the total size of the
block, it can be assumed that all transactions in the system
are of a similar size regardless of the transaction. Therefore,
the storage required by the execution of a market round can
be estimated with the following formula:

sizeround = 4 · sizetx(MAX ) + sizetx · N (11)

where sizeround is the storage that is needed in a market round,
sizetx(MAX ) is the storage required by a block with a single
transaction, sizetx the average storage used by a transaction
in a block with several transactions and N the number of
prosumers in the MG.

It is considered that the endorsement policy (section V-C-1)
is fixed in a subset of 16 peers. Consequently, the size of
the block is not increased as the number of prosumers grows
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FIGURE 5. Latency for the different transactions of the 4-node test.

since the number of signatures is bound. For the worst-case
scenario, the size of each transaction is 4 kB. Taking this into
account, the number of prosumers participating in the system
for a given storage capacity over a period of 20 years can be
calculated. For instance, considering a memory of 1 TB, if a
market round is performed every 5 minutes, the maximum
number of prosumers is 107, whereas when market rounds
are performed at 1-minute intervals, only 22 prosumers could
participate.

In addition, some approaches have been adopted in which
the BC size is reduced. Firstly, increasing the number of trans-
actions inside a block, at the expense of increasing latency,
result in a 20 % decrease of size (from 4 kB to 3,2 kB per
transaction). Secondly, the number of market rounds that are
carried out during the day can also be reduced using the
proposed event-based strategy.

5) LATENCY
Different latencies can be considered. In this work, the
latency refers to the waiting time that elapses between the
execution of the transaction requested by the client appli-
cation and the reception of the notification generated as a
result of the request. This latency depends on the block
creation time, which in the Hyperledger Fabric framework
is set to 2 seconds by default. However, this value can be
adjusted to the specific BC application being implemented.
For the tests, the block creation time has been set to 1 second.

TABLE 3 shows the latency as a function of the number of
nodes. The latencies were obtained by carrying out tests based
on a single transaction at 5-minute intervals over one hour.
Both the minimum and the median latency increase as the
number of nodes grows. Furthermore, peak values of latency,
above the usual range, occasionally appear (see FIGURE 5).

TABLE 4 depicts the latencies for the scenario in which
every prosumer submits a transaction at the same time. It can
be observed a decrease in the minimum and median latencies
whereas the maximum latency taken up by a transaction is
increased.

VI. EXPERIMENTAL RESULTS
As a use case, a MG connected to the main network,
is emulated. To replicate real residential consumption and PV

TABLE 3. Time delay for a single transaction.

TABLE 4. Delay time taken to carry out several transactions
simultaneously.

energy production profiles, real data obtained from [39] is
used. In addition, electricity prices of the Spanish electricity
market, published by Red Eléctrica de España in the ESIOS
portal [40] on a daily basis are also used. For the use case con-
sidered in this paper, the operation of the MG in island mode
is not addressed. Therefore, the MG is always connected to
the main grid. Moreover, since the use case is representing
residential users, reactive energy billing is not taking into
account.

The proposedMG comprises 18 heterogeneous prosumers,
each one implemented in a Raspberry Pi 4 model B [33] as
described in Section V. The 18 prosumers are categorized
into three groups: (a) the first group is made up of 6 pro-
sumers (1-6) with PV power generation and controllable
and non-controllable loads; (b) the second group consists
of 6 prosumers (7-12) with controllable and non-controllable
loads, but no power generation capacity; and (c) the last
group is composed of 6 prosumers (13-18) with only non-
controllable loads. The details of each prosumer are described
in TABLE 5.

The controllable loads, depicted in TABLE 5, are electric
water heaters, one for each prosumer within the first and
second group, i.e. prosumers from 1 to 12. Each heater has
a rated power of 1.5 kW and a capacity of 3.6 kWh. It is
assumed that these heaters have to be fully charged during
the day to be completely emptied at the end of the day,
emulating typical residential use. With this simple scenario,
it is demonstrated how the BC-IEC 61850 proposal manages
to improve the energy efficiency and the economic benefit of
all prosumers.

For the study, a sunny day and a partially cloudy day are
considered. A case of a very overcast day is not included
because in that case there would hardly be any transactions
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TABLE 5. Installed PV power and controllable loads of each prosumer in
the use case scenario.

FIGURE 6. Spanish electricity market prices on a working day.

between the prosumers since the prosumer surplus of PV
energy would be non-existent or very scarce.

FIGURE 6 illustrates the non-controllable and controllable
load consumption of each prosumer per day, as well as the
PV energy generated on the selected sunny and cloudy day.
Additionally, the energy balance for each prosumer is shown
for the two selected days. In both scenarios, the same profile
of electricity consumption of non-controllable loads and the
same profile of buying and selling grid prices are consid-
ered in order to make a more accurate comparison between
both. In the case of PV generation, only the first 6 pro-
sumers are displayed, as they are the only ones with installed
PV power.

The electricity prices used in this use case are shown in
FIGURE 7. Asmentioned before, they are real prices from the
Spanish electricity market [40] for a working day. It should
be noted that in this market, it is possible to choose between a
default billing or two period tariff, both are studied to validate
the proposal.

FIGURE 7. Energy consumed and generated by each prosumer on the
sunny and the cloudy day under study.

Analysing the graph, the great difference in price between
buying and selling energy to the grid is appreciated,
which strengthens the justification of our market strat-
egy. This is particularly noticeable during the peak period,
from 13 to 23 hours, when the average price for selling
energy to the grid is 0.039 e/kWh, and the buying price is
0.095 e/kWh for the default tariff and 0.113 euros/kWh for
two period tariff.

A. TRANSACTION ANALYSIS
To evaluate the market update strategy, the sunny day profile
data presented in FIGURE 7 is used. The study compares
two different Thresholds for the SoD technique (1). The
parameters to be evaluated are the number of updates made
in the aperiodic market and therefore stored in the BC regis-
ter and the energy estimation error committed by prosumer
(Errori (t)) and the total error in the MG (ErrorMG (t)), eval-
uated by the following expressions:

Errori (t) =
∫ t

ti,k−1
Energyi (t)− Energyi(ti,k−1)dt (12)

ErrorMG (t) =
∑N

i=1
Error i(t), (13)

This error integrates the difference between the last energy
consumption per minute that was sent to the MG and the
consumptions that have actually occurred during the time
the market has not been updated. In this way it is possible
to quantify the error made between the amount of energy
estimated in that time interval and that which has actually
been delivered. TABLE 6 quantifies the results obtained after
emulating the proposed strategy for the sunny day under
study.

Instead of presenting all the individual results of the differ-
ent prosumers, for space consideration, their statistical data is
shown. The mean and standard deviation (SD) of the 18 pro-
sumers are calculated. In addition, the total result of the MG
is presented, being this the most significant information. The
table details both the number of market updates and the error
made in the energy estimate throughout the day. Comparing
1SoD = 0.025 with SoD with 1SoD = 0.005, shows that
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TABLE 6. Number of event-based updates and power error rate in
blockchain registration on a sunny day.

the number of updates is significantly lower, but the error is
higher. This allows the designer to set a trade-off between
the number of updates and the desired performance, always
keeping the punctual error limited with threshold (1SoD).

B. HARDWARE DIMENSIONING
Based on the data obtained through the implementation of
the BC-IEC 61850 strategy in the test bench described in
Section V, it is possible to estimate the resources that are
necessary to implement the strategy in the use case.

The selected device to implement the developed system is a
64-bit ARM processor with a Linux-based operating system.
Based on the previous study carried out in Section V, the SBC
used easily meets the computing power requirements for this
use case.

Regarding the bandwidth, each prosumer needs a mini-
mum of 1 MB/s. If a user had speed problems, he could
operate without an orderer on his computer, which would
significantly reduce the amount of bandwidth needed, with
a 0.5 MB/s connection being enough to meet requirements.

The most critical point in the implementation of the BC
in a system that is expected to work over a long period
of time is the amount of storage required, since having an
always growing and distributed database in all the nodes of
the network can be a challenge, but thanks to the proposed
event-based technique (1), this BC could be working for a
great number of years.

In TABLE 7, it can be seen that depending on the threshold
(1SoD) used, a different number of daily transactions are
made, and this has a direct impact on the number of years that
the BC can be in operation. It presents a trade-off between
the precision of the technique employed and the time it will
be possible to keep the system functioning. In order to calcu-
late this time, the worst-case scenario, i.e. maximum storage
capacity required per update, is taken into account. For each
update (9), each transaction requires 4 KB (section V-C-4).

From the table, the significance of the reduction in the
number of updates is appreciated, and a comparison is made
with the one-minute periodic implementation due to it is
the minimum time step of the proposed event-based imple-
mentation. In addition, sporadic maximum latencies of up
to 34 seconds have been observed during testing, so it is
reasonable to set a minimum time between transactions of

TABLE 7. Comparison of storage capacity requirements according to the
technique used.

FIGURE 8. Sunny day use case: MG power profile throughout the day,
updates of each prosumer and the price factor applied at each moment of
the day.

oneminute. The proposed system is able to reduce the amount
of information to be stored in the BC register database by a
factor of 18, committing an error of less than 0.5 kWh per day
in the entire MG. Even in the worst-case scenario, the most
accurate event-based technique indicates that a 64 GB storage
system is suitable for the MG with 18 prosumers and it could
reliably operate for at least 33 years.

C. USE CASE RESULTS
Finally, the results obtained for two types of days with the
selected threshold (1SoD = 0.005 kWh) are presented. The
energy profiles are those presented in FIGURE 6 and the
prices are obtained from FIGURE 7.

In the first instance, FIGURE 8 shows the results for the
sunny day. The graph shows theMGpower profile throughout
the day, the updates of each prosumer obtained from (1) and
the price factor applied at each moment of the day (αprice)
obtained from (6).

In the upper graph, the total power within theMG is shown.
These power values are calculated as the sum of the PV
power produced at eachmoment by each prosumer, in yellow;
the sum of all the loads of each prosumer at each moment,
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FIGURE 9. Sunny day use case: Economic study.

in purple; the sum of the controllable loads, in blue; and the
power balance in the MG resulting from the difference in
the generated energy minus the energy consumed, in orange.
Analysing this graph, it can be seen how the production of
the PV systems takes place between 7 and 21 hours. In the
first hours the generation is low, so the energy is consumed
locally by each prosumer, therefore no market event takes
place. From 9 hours on, there are prosumers who begin to
have surpluses, which activates the market. In the following
hours, all surplus energy is absorbed by the controllable loads
of the different prosumers. This can be seen in the energy
balance signal around zero until approximately 17 hours.
From that moment on, all the water heaters are fully charged,
which means that the energy demand decreases sharply and a
positive energy balance starts to be achieved in the MG. This
surplus energy is sold to the grid.

The intermediate graph presents the moments of market
activation and the prosumer that activates them. As com-
mented previously, these events occur between 9 and 21 hours
because these are the moments in which some prosumer has
a surplus of PV energy. The number of events generated by
each prosumer depends on the amount of variation in their
energy balance over time, the total events in the MG are 399.

Finally, at the bottom graph, the price factor is shown for
each instant of time. As expected, this factor is higher in
the initial and final hours of the day because these are the
moments when a smaller amount of surplus PV energy is
available.

FIGURE 9 shows the economic study of the proposal
applying the strategy described in section IV-C. The upper
graph represents the amount of PV energy produced by each
prosumer, in orange, the amount energy consumed, in blue,
and the energy balance, in yellow, for the entire day. The

FIGURE 10. Cloudy day use case: MG power profile throughout the day,
updates of each prosumer and the price factor applied at each moment of
the day.

lower graph depicts the profit obtained (positive gain/negative
loss) by each prosumer in four different scenarios:: (a) with-
out the developed strategy for the default tariff; (b) without
the developed strategy for the two period tariff; (c) with
the MG strategy for the default tariff; and (d) with the MG
strategy for the two period tariff. In the graph, it can be seen
how significant the increase in profit of the energy producers
is, as well as the savings of those who only consume, both for
the two period tariff and the default tariff. The total energy
balance of the MG is -58.52 kWh. The total cost of the MG,
calculated as the sum of the individual costs of all prosumers,
when the strategy is not applied is 10.03e and 7.62e for
the default tariff and for the two period tariff, respectively.
However, when the strategy is applied these total costs are
reduced to 6.95e and 4.52e respectively. Therefore, for a
sunny day, the proposed strategy achieves a significant saving
in costs of 30,75% and 40% for the default tariff and for the
two period tariff, respectively.

In the second instance, FIGURE 10 shows the results
for the cloudy day. As in the previous case, it presents the
MG power profile throughout the day, the updates of each
prosumer and the price factor applied at each moment of the
day. In this case, it can be seen that the surplus PV energy of
the prosumers is more limited, so all the surplus produced is
absorbed by theMG, for this reason the energy balance inMG
is almost always below zero. Since not all the heaters can be
fully chargedwith excess energy after 20 hours, the remaining
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FIGURE 11. Cloudy day use case: Economic study.

capacity is charged with energy from the grid. This results
in the peak consumption from 20 to 22 hours. The shortage
of surplus of PV energy compared with the sunny day also
justifies: the lower number of market activation events and
the fact that the price factor of MG energy is almost always
above 0.5 as it is a case where energy is more expensive due
to lower PV production. The number of events and the error
(ErrorMG), calculated with (13), for an entire day in the MG
are 235 and -0.6092 kWh respectively.

FIGURE 11 shows the economic study for the case of
the cloudy day. In this case, the benefits produced are
less than those of the sunny day because fewer transac-
tions can be made. However, it is worth highlighting that
despite having less surplus of energy available, all prosumers
achieve a small economic benefit. Analysing the results
achieved on a cloudy day, the balance of energy of the MG
is -132,01 kWh. The total cost of the MG, calculated as
the sum of the individual costs of all prosumers, when the
strategy is not applied is 13,53e and 11,52e for the default
tariff and for the two period tariff, respectively. However,
when the strategy is applied these total costs are reduced to
12,55e and 10.23e respectively. Therefore, for a cloudy day,
the proposed strategy achieves a significant saving in costs of
7,22% and 11,22% for the default tariff and for the two period
tariff, respectively.

VII. CONCLUSION AND FUTURE WORK
This paper addresses one of the main technical challenges
of the energy sector on account of the increasing number of
DERs mainly based on renewable energy: the shift from a
centralized operational approach to a distributed generation
paradigm. This has encouraged the advent of MGs to propose
new business models and management strategies. Within this

context, this paper introduces an efficient management strat-
egy, which is aimed at obtaining a fair division of costs billed
by the utilities, without relying on a centralized utility or MG
aggregator. The management strategy relies on the design of
a local event-based energy market within the MG. This local
market is based on the integration of the IEC 61850 standard
into BC Smart Contracts, which facilitates the distributed
communication among the commercial devices complying
with the standard. The approach is implemented using low
cost off-the-shelf hardware, such as the Raspberry Pi 4 model
B platform, which reduces the time for the return on the
investment. Consequently, the proposed strategy becomes an
economically feasible solution for residential environments.
The development of an event-based market also results in a
reduction in the amount of computation and communication
resources required, and more importantly, without negatively
affecting the system performance. In addition, the proposed
pricing strategy provides a win-win energy price for both
energy producers and consumers, taking advantage of the gap
between the price paid for the electricity consumed and that
generated and injected to the grid. In the use case scenario,
it is demonstrated that the proposed system is able to reduce
the amount of information to be stored in the BC register
database by a factor of 18. Furthermore, the error introduced
is less than 0.5 kWh per day and for the entire MG. Finally,
the strategy allows to achieve energy price savings up to 40%.

Future work will address the design of an islanded strategy,
supported by batteries installed within the prosumers and the
implementation of the BC-IEC 61850 in a real MG.
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Abstract: This paper describes a practical approach to the transformation of Base Transceiver Stations
(BTSs) into scalable and controllable DC Microgrids in which an energy management system (EMS)
is developed to maximize the economic benefit. The EMS strategy focuses on efficiently managing
a Battery Energy Storage System (BESS) along with photovoltaic (PV) energy generation, and non-
critical load-shedding. The EMS collects data such as real-time energy consumption and generation,
and environmental parameters such as temperature, wind speed and irradiance, using a smart sensing
strategy whereby measurements can be recorded and computing can be performed both locally and
in the cloud. Within the Spanish electricity market and applying a two-tariff pricing, annual savings
per installed battery power of 16.8 euros/kW are achieved. The system has the advantage that it can
be applied to both new and existing installations, providing a two-way connection to the electricity
grid, PV generation, smart measurement systems and the necessary management software. All these
functions are integrated in a flexible and low cost HW/SW architecture. Finally, the whole system is
validated through real tests carried out on a pilot plant and under different weather conditions.

Keywords: base transceiver stations (BTS); microgrid; green communications; energy management
systems (EMS); IEC61850 standard; embedded systems for Internet of Things (IoT); monitoring and
control systems; photovoltaic distributed generation

1. Introduction

In the last two decades, there has been a growing demand for Base Transceiver Stations
(BTSs) due to the development of mobile communication networks with smaller cells and
BTSs closer to the users. From the network operator (NO) point of view, BTSs are the main
source of energy consumption. A decade ago, virtually 60% of the energy consumption of
mobile phone operators was directly attributed to the equipment installed in the BTSs [1].
However, with the advent of the fourth (4G) or Long-Term Evolution (LTE) and fifth gener-
ation (5G) networks, the amount of traffic volume in the mobile networks has considerably
grown, which has led to an increase in the total energy consumption, and therefore, in the
carbon footprint generated. Moreover, 5G networks require between two and three times
the number of BTSs compared to those installed for the legacy mobile generations [2].
Although 5G has been designed to be more energy efficient than the previous genera-
tions [3], the deployment of BTSs for 5G will increase the energy consumption by 5% [4].
As a result, the costs in terms of capital expenditure (CapEx) and operational expenditure
(OpEx) will steadily rise. Enhancing the energy efficiency of telecommunication networks
becomes a significant contribution when it comes to fighting global warming. However,
in the context of rapidly rising energy prices, it is also creating economic opportunities [5].
Currently, energy consumption is regarded as an important performance indicator of the
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equipment comprising the BTSs [6]. This is stated in the European Telecommunications
Standards Institute (ETSI) standard [7] and in 3GPP (3rd Generation Partnership Project)
specifications [8].

For many years in the design of mobile networks, the focus has always been on in-
creasing the user throughput and the service provider capacity, without taking energy
efficiency and environmental impact into consideration. However, the last decade has
seen a change of emphasis and improving energy efficiency within BTSs has become
strategically vital, not only for financial reasons, reducing costs, but also for developing
a more self-sustainable network of BTSs, which clearly has a positive impact on the cor-
porate brand image of the network operators (NOs). Several projects, such as EARTH [9],
ECONET [10], co-funded by the European Commission under the Framework Programme
7 (FP7), and GreenTouch [11] and 5GrEEn [12], have been carried out, which shows the
growing public and private concern about this field. Finally, OPERA-Net and OPERA-Net
2 [13] are other projects which stand out in the field of energy efficiency and low-cost
implementation for Mobile Radio Access Networks.

In the literature, two approaches have mainly been put forward to address this
problem: (i) energy saving strategies, also called power saving [14], which take into
account the traffic load, which is based on real-time data traffic and advocates the use of
energy-efficient components to improve the energy consumption of the BTS at the hardware
level; and (ii) the use of renewable sources of energy as main power sources for BTSs to
reduce the electricity bill and the negative environmental impact of conventional fossil
fuel-based energy resources due to their carbon footprint [15].

As for the use of renewable energy, sustainable BTSs have become a real solution
to the problem. BTS configurations range from standalone solar powered BTSs with
storage batteries, to grid-connected ones, in which the grid provides power to the BTS
when the photovoltaic system (PVS) and the battery energy storage system (BESS) do not
provide enough power. Hybrid configurations can also be found, which integrate different
renewable sources such as wind and solar energy along with conventional energy sources
such as diesel generators [16–18]. The authors in [19–21] carried out a detailed analysis
of the technical and economic feasibility for different configurations used to power BTSs.
However, to the best of the author’s knowledge, there are no research studies which focus
on the economic benefit derived from considering a BTS as an MG in terms of optimal
energy flow control. Needless to say, achieving energy efficiency needs to go hand in hand
with providing uninterruptible and reliable power supply to the critical loads for operation.
In this regard, BTSs powered by only solar energy pose a challenge of dimensioning the
PV system and the Battery Energy Storage System (BESS) [22]. On the other hand, in grid-
connected BTSs, when a power outage occurs, the communication networks should remain
operative. Moreover, a BTS based on renewable energy without an operational strategy
may increase the OpEx, thereby delaying the return on the initial investment and making
this alternative less attractive for network operators. Design of an operational strategy
must consider the BTS energy profile in terms of the energy consumed by each component,
and thus, the energy allocation per function within the BTS. This topic has been properly
researched in [23,24], showing that the radio equipment and amplifiers account for more
than 60% of the power consumed; 11% is due to the DC power system, while the cooling
equipment is responsible for 25% of the power consumed. Therefore, an optimal design
of the radio equipment and the cooling system can reduce the power drawn by the BTS.
Likewise, it is very important to develop strategies directed towards BTS Energy Savings,
which can be applied to both the radio equipment, e.g., radio sleep mode [25], and to
the cooling, e.g., passive cooling, advanced climate control [26] and power electronics.
Additionally, the forecasting of the available energy from renewables should be considered
due to their stochastic nature, and the electricity price, battery health and lifespan, charging
and discharging cycles for the BESS etc. are also required. Hence, an intelligent energy
management of the BTS components has to be adopted.
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To develop the above-mentioned operational strategy, a microgrid (MG) paradigm
can be used to model a BTS, consisting of a low-voltage network (DC and/or AC) that
integrates renewable energy sources (RES), a BESS and controllable loads connected to the
main grid. To provide the MG-based BTS with intelligent energy management, a local con-
troller and an Energy Management System (EMS) should be implemented. By supervising
and coordinating the operation of the sources of renewable energy, the BESS, the control-
lable loads (critical and non-critical) and the network devices, the BTS performance can
be improved.

The operation of an MG-based BTS should be based on a sensing system for deter-
mining the value of electrical and environmental parameters. In [27], a comprehensive
review of several PV sensing systems is presented. Overall, these systems have either a
high cost [28] or reveal limitations regarding the number and type of the parameters to be
measured [29]. The practical application of monitoring systems poses many challenges,
such as the harsh environmental conditions the different components must withstand and
the degradation of the electrical components e.g., connector corrosion, resource restrictions
with respect to the energy efficiency, real-time constraints and low-cost implementations,
to name but a few [27]. To successfully address these challenges, the monitoring system
proposed in this paper is based on up-to-date technologies which guarantee real-time
operating conditions, low energy consumption, protection against harsh environmental
conditions, firmware OTA updating, local and cloud-based data storage, high computa-
tional capacity, accurate measurements and support for several communication protocols,
e.g., I2C, SPI, Modbus and MQTT, implementing a low-cost approach. Another strength
of this approach is that the system not only monitors the BTS variables but also is able to
control the energy flow among the different elements comprising the BTS. This is carried
out by an EMS algorithm developed for this application.

The scalable MG-based architecture for BTSs described in this paper includes the
following features:

1. Transformation of BTSs in scalable and controllable DC Microgrids to reduce the OpEx.
For this purpose, an Energy Management System (EMS) is developed. EMS manages
the energy flow in the MG-based BTS based on different scenarios as described in
Section 4.

2. The BTS is modeled on the IEC 61850 standard, which improves interoperability and
scalability, supporting, in the future, the integration of new BTSs. The equipment
used in BTSs are usually manufactured by different vendors overlooking the interop-
erability between these devices. Thus, a significant advantage of using the IEC 61850
is that it facilitates future extensions.

3. The data collection scheme is based on the cloud from where the information becomes
available. This provides always-on, real-time data collecting and the possibility of
cloud computing for real-time management.

4. The hardware/software (HW/SW) architecture within the BTS is implemented by us-
ing low-cost off-the-shelf hardware. This reduces the time for the return of investment
and becomes an economically feasible solution for network operators.

The main contributions of the paper are summarized as follows: (i) the design of a
scalable architecture to turning BTSs into Scalable and Controllable DC Microgrids which
can be applied to any type of BTS; (ii) the architecture is based on the IEC 61850 standard,
which enables the distributed communication among the BTSs; (iii) the low-cost hardware
implementation of the system, which decreases the time for return on the investment,
making it more attractive for network operators; (iv) the proposed architecture lays the
foundations to allow several BTSs to work cooperatively, sharing energy among them
and injecting the surplus energy to the grid. In short, it allows a set of controllable MG-
based BTSs to be aggregated through a centralized management in the shape of a Virtual
Power Plant (VPP) [30,31]; (v) implementation of an EMS which focuses on optimizing the
monetary benefits obtained by managing the charging and discharging of a BESS along
with the production of photovoltaic (PV) energy and the shedding of non-critical loads;
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(vi) the development of a smart sensing strategy, as all the sensors have communication
capabilities, smart processing based on low-cost hardware and cloud computing facilities
for PV forecasting. This allows several BTSs to work cooperatively.

In the literature, there are virtually no works dealing with the transformation of a
conventional BTS into a scalable and controllable DC MG. An experimental setup has been
developed to validate the approach.

The remainder of this paper is organized as follows. Section 2 describes the conven-
tional BTS layout and the proposed BTS architecture. Section 3 described in detail the
proposed MG-based BTS. Results are presented in Section 4. Finally, conclusions are drawn
and future work is outlined in Section 5.

2. Architecture of the Microgrid-Based Base Transceiver Station (MG-Based BTS)

In this section, the proposed architecture for the MG-based BTS is described. To evalu-
ate the degree of the transformation, the conventional BTS is first introduced.

2.1. Conventional Base Transceiver Station

Figure 1 shows the architecture of a conventional grid-connected BTS without renew-
able energy generation nor local controller.
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This BTS layout can be applied to any BTS regardless of the type [9]. As seen in Figure 1,
the BTS consists of a grid-connected power supply system which integrates a rectifier,
the BESS unit, the Base Band unit (BB), the Radio Frequency (RF) unit, the Power Amplifier
(PA) and different AC loads, such as the cooling system and lighting. The DC output of the
rectifier is connected to: (i) the BESS, which acts as a backup source to facilitate continuous
operation in case of a power outage; (ii) the transmission/reception equipment (RF, PA and
BB). The grid-connected power supply system manages the charge of the BESS.

A power modeling approach for conventional BTSs can be found in [32], in which,
at the time of publication, it was estimated that, in a full-load scenario, the power demand
by BTSs would be reduced by 50% and 20%, respectively, from 2014 to 2020. With this
power estimation in mind, the BESS size is determined as a function of the required
autonomy, i.e., the amount of time the BESS can power the BTS uninterruptedly to ensure
100% operability in case of a power outage.
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2.2. Proposed Architecture for the MG-Based BTS

Figure 2 depicts the block diagram of the proposed architecture for a grid connected
BTS with solar generation based on a microgrid architecture.
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The MG-based BTS consists of the aforementioned BTS along with a PV system with
Maximum Power Point Tracke (MPPT) control and a DC bus connected to the BTS rectifier.
This DC bus acts as the microgrid main bus to which the different elements are connected.
The BESS and non-critical loads are directly connected to the DC bus without DC/DC
converters. This is the approach adopted by most companies with the aim of maximizing
short-term profitability, since a more technologically sophisticated design would increase
the costs. In the BTS architecture proposed in this paper, all loads (critical and non-critical)
and connections of the different parts of the MG-based BTS become controllable elements
through a set of switches (Figure 2). Furthermore, several variables, such as currents and
voltages in loads and the BESS are monitored. Thus, different operating modes and energy
flows within the BTS can be managed by designing a local controller.

This local controller is implemented on an Single-Board omputer (SBC) Raspberry
Pi 4 model B and some electronics associated. The reason for choosing this SBC is three-
fold: firstly, a reduction of power consumption is required; secondly, because of its high
processing power; finally, the Raspberry Pi platform has been successfully used in similar
works [33–35]. The associated electronics consists of a main board and a series of latching
relays electrically connected to the main board. In the main board, several sensors and con-
ditioning electronics have been included to collect electrical parameters of the installation,
such as BESS and load currents, BESS voltage and some ambient parameters (temperature,
humidity, etc.). These parameters are sent to the SBC through I2C protocol. The local
controller, which also receives the DC bus voltage and PV modules parameters from the
MPPT solar charger controller through Modbus protocol, processes all this information to
calculate other variables, such as the State of Charge (SoC) of the BESS, which allows the
MG-based BTS to be managed. To implement the control of the MG-based BTS, there are
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also three latching relays which connect or disconnect the BESS and the non-critical loads
to the DC bus, and the rectifier to the grid. Henceforth, these associated electronics will be
referred as the SBC driver, since it acts as the bridge between the local controller in the SBC
and the hardware of the installation.

Likewise, to provide the basis for the smart sensing strategy, a server based on
IEC61850 standard has been implemented. This allows the MG-based BTS to be remotely
controlled as a VPP node using an external IEC61850 client. Previously, an IEC61850 plant
model of the MG-based BTS is proposed to store data in a standard way.

The MG-based BTS has been designed for the worst-case scenario for a macro BTS
with a rated power of 3 kW. The experimental setup has been developed using the same
RF equipment and power amplifiers as those installed in 3-kW BTSs. The rated power
is equally split among the three controllable loads: two critical loads corresponding to
the always-on transceivers and a non-critical load for transceivers that can be switched
off, and auxiliary equipment, such as the cooling system, when necessary, and lighting.
This power configuration can be easily scaled to meet the requirements of more power-
demanding BTSs.

3. MG-Based BTS Operation
3.1. MG-Based BTS Measurements and Control Electronics

In this subsection, the parameters to monitor and the electronics required to accom-
plish the stated objectives are described. The relationship between the elements that
measure the electrical parameters and control the flow of energy in the MG-based BTS is
shown in Figure 3. In the following paragraphs, these elements will be explained.
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Firstly, the DC currents are measured using the ACS758LCB-100B-PFF-T and the
ACS758LCB-100U-PFF-T sensors [36] (Figure 4). The range and the sensitivity of these
sensors are ±100 A and 40 mV/A, respectively. Regarding the currents, these values are
enough for an expected maximum BESS current of ±60 A and a maximum single load
current of 20 A. As for the sensitivity, at a full scale, the sensors will output ideally a
DC voltage signal between 0 V and 5 V, covering the dynamic range of the ADC used.
The conditioning circuits for the current sensors consist of low pass filters with a cutting
frequency of 50 Hz. They are used to eliminate possible coupled noise from the grid.
Finally, the typical output noise of the sensor, in measured current units, will be 0.33 A,
which is acceptable for this application.
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cal loads.

The BESS voltage is measured using a voltage divider to scale the voltage to the
dynamic range of the ADC (Figure 4). The ADC used to convert the DC currents and
voltage measurements is the ADS1115 [37]. This low-cost four-channel 16-bit I2C ADC has
an input range from 0 V to 5 V, a maximum sampling frequency of 860 Hz and features
low power consumption. Furthermore, to measure the ambient parameters (temperature,
humidity and pressure), the I2C BME680 sensor [38] is used due to its low cost and low
power consumption.

Once the measurements are obtained, the BESS SoC is estimated. This is an impor-
tant parameter for the management of the MG-based BTS. In [39], a complete state of the
art analysis of different algorithms for lead acid batteries SoC estimation can be found.
Among them, the current integration or Coulomb counter method has been used in this pa-
per. This method, along with the manufacturer’s specifications of the batteries, are merged
to provide an accurate estimation of the SoC, through the floating voltage of the BESS and
the dynamic capacity depending on the discharge current rate [40].

The MPPT solar charger provides several parameters related to the PV installation
through the Modbus protocol [41]. For the sensing strategy proposed in this paper, the fol-
lowing parameters are required: (i) the output voltage of the MPPT solar charger; (ii) the
output current provided by the charger; and (iii) the voltage, current and power of the PV
modules. All these parameters are collected in the SBC.

The loads are connected or disconnected through low cost off-the-shelf MOSFET-
CSD18536KCS 60 V N-Channel transistors [42]. Their maximum drain-source voltage is 60
V, over the maximum voltage of the DC bus 58 V, which is imposed by the rectifier of the
RF equipment at the dedicated output for the BESS [43]. Furthermore, for the connection of
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the different parts of the installation, EW60-1A3 12VDC 60 A [44] latching relays have been
included in the hardware architecture. Figure 5 briefly depicts the conditioning circuits of
the transistors and relays of the SBC driver.
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Regarding the power supply for the electronics, there are three isolated sources:
(i) the SBC power supply; (ii) the power supply for the main board of the SBC Driver
and the transistor-based switches for the critical loads; and (iii) the power source for
transistor-based switches for the non-critical loads. This configuration breaks ground
loops (leading to less interference in data wires), isolates low power electronics from the
higher power parts (cutting off unexpected overloads) and also isolates the SBC and its
peripherals, which avoids problems related to different grounding configurations among
devices. Regardless of the source, the power is always drawn from the BESS to avoid the
eventual loss of power due to a grid failure. To this aim, three different low-cost DC/DC
converters, with a rated current of 4 A that meets the current demanded by the SBC driver
and the SBC, have been used.

To keep the isolation among the aforementioned parts, drivers based on the FOD3182
optocoupler [45] and the digital isolator MAX14937 [46] for the transistors and I2C com-
munications are included. The SBC controls the optocoupler drivers through two I2C
expanders [47].

Finally, electromagnetic noise, due to abrupt changes in DC current flows, must be kept
within certain limits. In the early stages of the MG-based BTS development, noise coupling
was detected in measurements, generated by the DC currents of the BESS and the loads.
Consequently, an analysis of this electromagnetic interference was performed, seeing that a
100-mV noise was coupled into the input signals of the ADC (leading up to a 5 A error in
the measurements of DC currents through the loads) and into the BME 680 power supply
(leading to a malfunctioning). In the final design of the SBC driver, the components were
rearranged to minimize the coupling noise. Figure 6 depicts current measurements taken
in the final set up of the SBC driver in the presence of electromagnetic interference. Figure 6
shows a sudden change in the currents through the non-critical loads (Figure 6a) and in the
BESS (Figure 6c). Particularly important is the 40 A change in the current through the BESS,
which induces electromagnetic interference in the input signal of the ADC, introducing a



Sensors 2021, 21, 1202 9 of 25

0.4 A measurement error in the critical load DC currents. This error is shown in Figure 6b
in the shape of a noise peak. Hence, it is important to reduce the negative impact of the
noise on the ADC input, achieved in the final design.
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Figure 6. (a) sudden change in the currents through the non-critical loads; (b) measurement error
caused by an approximately 40 A change in the DC current of the BESS; (c) sudden change in the
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3.2. Wireless Weather Station

A wireless weather station has been developed and installed close to the PV modules.
The architecture of the wireless weather station is shown in Figure 7. The main purpose of
this weather station is to collect environmental data, which will be used in the smart sensing
strategy focusing on the prediction of PV generation as part of the VPP control strategy.
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Figure 7. Wireless weather station architecture.

The weather station is made up of two modules: (i) the sensing module, which consists
of a set of sensors used to measure environmental parameters related to the PV modules,
such as irradiance, wind direction and speed, and PV module temperature; and (ii) the



Sensors 2021, 21, 1202 10 of 25

acquisition electronics based on an ESP32 microcontroller and a BME 680 sensor. Regarding
the sensing module, a SR05 pyranometer [48] is used to measure the horizontal irradi-
ance [49]. This sensor provides an analog voltage output ranging from 0 V to 2 V for
measured irradiance values from 0 to 2000 W/m2, respectively. The wind direction and
speed are obtained by a Davis Instruments anemometer with an operating range from 1 to
322 km/h for wind speed with a resolution of 1 km/h using a sensor based on a reed switch
whose output is directly connected to the microcontroller. For wind direction, the operating
range goes from 0◦ to 360◦ with a resolution of 1 [50]. Finally, the PV module temperature
is measured by a PT100.

Figure 8 shows the PT100 fixed to the PV module, the anemometer with PV modules
at the background and the acquisition electronics of the weather station.
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As far as the second module is concerned, the ADC ADS1115 converts the voltage
information from the pyranometer and the anemometer (wind direction) to digital values
which are sent to the microcontroller through the I2C protocol. Additionally, the BME680
sensor measures and processes the ambient temperature, humidity and pressure. This in-
formation is also sent to the ESP32 microcontroller via an I2C protocol. A fan has been
installed to keep the ambient temperature of the electronics stable and minimize any
fluctuation in the temperature measured by the BME680.

The two-core ESP32 microcontroller software architecture is based on the real-time
operating system FreeRTOS, which allows to allocate tasks in a particular microcontroller
core. One core executes a task which reads the sensor measurements. The other core
is responsible for sending the information to the SBC via MQTT (more details will be
given in the next subsection), and for sending the information to the IoT cloud of Matlab,
named ThingSpeak.

The variables stored in Thingspeak (panel and environment temperature, humidity,
irradiance, wind speed and wind direction) are shown in Figure 9.

3.3. Communication System

The communication system is the basis of the smart sensing operation. It is divided
into the local communication architecture, which is aimed at creating communication
channels between the different SBC processes, the SBC driver and the weather station,
and the global communication strategy, which allows the SBC and a global controller
to communicate via the IEC61850 standard. A specific extension of this standard is the
IEC61850-7-420, which defines the communication and control interfaces of Distributed
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Energy Resources (DERs) and proposes logic nodes (LN) to completely describe DERs and
control systems associated to them. This extension can be used to model communications
in MGs [51].
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The local communication architecture is based on “The Robot Operating System”
(ROS). ROS is an open-source operational system mainly meant to develop robotic sys-
tems [52]. In the local communication architecture, the SBC driver sends the measurements
via I2C and Modbus to the processes in the SBC. The SBC collects and publishes the mea-
surements as ROS topics to be shared by all the processes. On the other hand, the weather
station sends the environmental information via Wi-Fi through MQTT protocol to the
SBC. The choice of the MQTT protocol is due to its stability. Finally, the environmental
parameters are transformed into ROS topics at the SBC. The block diagram in Figure 10
shows the communication protocols of the smart sensing system.

As for the global communication strategy, the EMS and the IEC61850 Server read the
ROS topics related to the measurements and update the IEC61850 plant model parameters
of the MG-based BTS. As a result, the IEC61850 clients can directly access the MG-based
BTS parameters through a standard communication channel via a TCP/IP protocol. Fur-
thermore, this global communication strategy can receive control instructions from global
controllers to change the behavior of the local controller or to directly control the MG-based
BTS. The IEC61850 communication standard provides high scalability and interoperability
allowing the MG-based BTS to be easily extended with any system or equipment which
comply with the standard. From a VPP perspective (based on BTSs), this standard brings
an economic benefit, since after the initial investment in the development of an MG-based
BTS, the time and capital cost of adding a new MG-based BTS is dramatically reduced.



Sensors 2021, 21, 1202 12 of 25

Sensors 2021, 21, x FOR PEER REVIEW 12 of 26 
 

 

based BTS. The IEC61850 communication standard provides high scalability and interop-

erability allowing the MG-based BTS to be easily extended with any system or equipment 

which comply with the standard. From a VPP perspective (based on BTSs), this standard 

brings an economic benefit, since after the initial investment in the development of an 

MG-based BTS, the time and capital cost of adding a new MG-based BTS is dramatically 

reduced. 

 

Figure 10. Communication protocols of the smart sensing system. 

Figure 11 depicts the plant model of the MG-based BTS, which consists of different 

logical devices (LD), each one representing one component or device with its own entity. 

For instance, the logical device labeled as LD RGL represents the MPPT solar charger. This 

LD contains the ZRGL class, which has been fully specified in this work and cannot be 

found in the standard. It can be considered that the ZRGL class (Appendix A) expands 

the IEC61850 (specifically IEC61850-7-420), as the standard does not include any class to 

describe a DC/DC voltage regulator. 

Figure 10. Communication protocols of the smart sensing system.

Figure 11 depicts the plant model of the MG-based BTS, which consists of different
logical devices (LD), each one representing one component or device with its own entity.
For instance, the logical device labeled as LD RGL represents the MPPT solar charger.
This LD contains the ZRGL class, which has been fully specified in this work and cannot
be found in the standard. It can be considered that the ZRGL class (Appendix A) expands
the IEC61850 (specifically IEC61850-7-420), as the standard does not include any class to
describe a DC/DC voltage regulator.
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3.4. Processing and Energy Management Systems
3.4.1. Processing System

As introduced in the general overview, the local controller is based on an SBC,
which implements the local controller and an HMI (Human-Machine Interface). The local
controller consists of a set of processes responsible for coordinating and controlling the
different operating modes of the MG-based BTS. Among its main functions are collecting
measurements from the SBC driver, the SoC estimation, the control of the energy flows
through the EMS, and adding high-level features of the IEC61850 standard. A global
controller in the shape of an IEC61850 client could perform control actions and moni-
toring tasks. Finally, the HMI provides an integrated interface, which displays the data
collected from the SBC driver and control variables with the aim of facilitating the manual
intervention in the MG-based BTS operation.

The processes comprising the local controller and the HMI can be categorized in
three levels: (i) the physical interaction level in which the data from the sensors and the
BTS parameters is obtained; (ii) the logic level which is based on the developed IEC61850
Server and implements the EMS, the high-level functionalities, and the modification of the
IEC61850 plant model; and (iii) the HMI.

The processes are executed at fixed time intervals depending on the level they are in
and the data dependency among them. Those processes in the physical interaction level
and those implementing the HMI have the smallest execution interval (2 s) for efficient
operation, since the HMI must display the data collected by the processes in the physical
interaction level. The execution interval for the processes in the logic level is set to 5 s.
It is important to note that the Raspberry PI OS does not feature real-time capabilities.
Therefore, the definition of the execution intervals depends on the process execution time.

3.4.2. Energy Management System

The proposed EMS is focused on optimizing the monetary benefits obtained by man-
aging the charging and discharging of the BESS in conjunction with the generation of PV
energy and the management of non-critical loads. To implement this strategy, it is necessary
to participate in an electricity market with a two-tariff pricing scheme. These markets are
common in many countries, as this pricing scheme encourages the consumption of energy
in periods where the energy demand is lower. This is the case on the Spanish electricity
market [53]. In this type of billing, prices are significantly more expensive for the peak time
(PT) tariff in comparison the off-peak (OT) tariff. This type of pricing scheme is particularly
recommended for the case under study for two reasons: (i) the PV energy generation takes
place mostly during the PT period, which encourages self-consumption at times when the
price of energy is higher; and (ii) the energy consumption in the BTS does not tend to vary
greatly during the day and the average daily price of energy with two periods is usually
lower than the default tariff, which makes the total price of energy consumed by the BTS
lower in the case of a two-tariff pricing scheme [54].

In the proposed EMS, it is considered that the installed PV power is less than or
equal to the one consumed by the loads installed in the BTS, since the installed equipment
does not allow grid feeding. Nevertheless, this strategy can be extended by considering a
surplus of PV that can either be injected into the grid or used for battery charging. In this
work, it is also assumed that the BESS is working at the proper temperature thanks to the
cooling equipment.

Regarding the BESS size, in this work, only the back-up batteries previously installed
in the BTS are considered. A further increase in the BESS size could be feasible for new
BTS projects, in which more efficient storage technologies, such as Lithium-ion, can be
implemented, or if the current battery prices decrease. Since the back-up batteries are
used in the EMS strategy, they will not always be fully charged in case of a power outage.
To overcome this drawback, three actions are taken:

• It is always guaranteed that the BESS discharge, scheduled by the EMS, does not exceed
a minimum level so that the power support is available in the case of an outage.
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• The BESS is charged, after a discharge process, at the beginning of the off-peak tariff
period when the electricity price is low. This increases the number of hours during the
day in which the BESS is fully charged.

• In the event of a power outage, non-critical loads are disconnected to maximize the
back-up time provided by the BESS.

It is possible to obtain multiple operating states by using the installed switches (see
Table 1). The following states provide an optimal solution for the operation of the BTS
while at the same time making an efficient use of the BESS:

• State 0 or Back-up State: this state comes into operation when there is a drop off
in the main grid. In this state, which rarely occurs in countries with reliable grids,
the consumption of the installation is reduced to only the critical loads, and the BTS is
powered by the BESS and the energy available from the PV modules at that time.

• State 1 or Transition State (Peak Tariff) or Battery Charging State (Off-Peak Tariff):
this state is used as a transition state in the case of working in the Peak tariff period.
The BTS remains in this state for a maximum of 30 s. During the Off-peak tariff period,
this state is used to charge the battery.

• State 2 or No Battery State: in this state, the BESS is disconnected, either because it has
already been charged to the desired level in the Off-Peak tariff period or because it
has been discharged to the defined level in the Peak-tariff period.

• State 3 or Battery Discharging State: the BESS is discharged by powering either part
or all of the non-critical loads. Thus, an appropriate discharge current can be selected
considering the characteristics indicated by the manufacturer. The remaining loads in
the BTS are fed from the grid and the PV system.

• State 4 or Island State: in this state, the BTS works in island mode without drawing
power from the grid. This state is used when the production of PV system is suffi-
cient to power the whole BTS, supported by the discharge of the battery within the
appropriate discharge range.

• State 5 or Cloud State: this state is used to avoid unnecessary changes of state produced
by the drop of PV power occasionally caused by a cloud, while protecting the BESS
by keeping it within proper discharge ranges. If the PV power falls abruptly and
the BTS is working in State 4 or Island State, the non-critical loads are disconnected,
and the average PV production of the last few minutes is continuously checked. If this
average PV power generation continues to decrease in the following minutes and the
PV production does not recover, the system returns to a grid-supported state.

Once the operational states have been introduced, the proposed finite state machine
(FSM) representing the behavior of this EMS is described. Three levels of priority are
established, in the state transition:

(1) Very High Priority: In the event of a grid outage, the state is immediately changed
from any state to State 0 or Back-up State. When the outage is over, the FSM enters
State 1 or Transition State.

(2) High Priority: If there is a change from the off-peak tariff period to the peak tariff
period or vice versa, there is a transition from any state to State 1 or Transition State.

(3) Normal Priority: Common EMS operation with grid available and operating within one
of the working periods. The transitions in this mode are described in the following table.

To gain an insight into the proposed EMS, a state diagram flowchart describing the
operation of the FSM in Normal Priority is shown in Figure 12. To reduce the clutter,
the Very High Priority and High Priority transitions are not depicted because they follow
basic rules.
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Table 1. Finite state machine transitions in normal priority.

State
Switch Non-Critical

Loads

Transition (Normal Priority)

1 2 3 Condition State

0 ON ON ON OFF

1 ON ON ON ON

PT&&SOC< SOCmin || OT&&SOC >SOCmax 2

PT&&PV< THPV&& SOC >SOCmin 3

PT&&PV ≥ THPV&& SOC > SOCmin 4

2 OFF ON ON ON

3 ON OFF ON ON PV > TH+
PV

∣∣∣∣ SOC < SOCmin 1

4 ON ON OFF ON
SOC < SOCmin 1

PV < TH−PV 5

5 ON ON OFF OFF
PV > THPV 4

PV > THPV
∣∣∣∣SOC < SOCmin 1

PT, Peak tariff period: regarding electricity, the most expensive period of the day. OT, Off-peak period: the most economical period of the
day. SOCmin, minimum selected state of charge: this value is set according to the manufacturer’s guidelines for the BESS to maximize the
relation between the depth of discharge of the BESS and the number of life cycles. SOCmax , maximum selected state of charge: this value is
set according to the manufacture guidelines for the BESS to maximize the relation between the depth of discharge of the BESS and the
number of life cycles. THPV , PV-selected threshold: this value sets the PV power required to switch to island mode ensuring that the BESS
complements the PV with adequate discharge currents. TH−PV , PV-selected threshold minus offset: this value is set to establish a hysteresis
in state transitions associated with the PV threshold, and thus, prevents high frequency transitions. TH+

PV , PV-selected threshold plus
offset: this value is set to establish a hysteresis in state transitions associated with the PV threshold, and thus, prevents high frequency
transitions. PV, average PV over the last 15 min: this is used to determine the continuity of the PV drop.
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The green color shows the states that are used in both PT period and OT period,
whereas the orange color shows the states that are used only in PT periods. Finally, the yel-
low color shows the back-up state that is used whenever there is a grid outage.

Once the different transitions have been described, it is possible to analyze the BTS
operation modes with the implemented strategy.

When a Very High Priority event occurs, i.e., the grid outage, the system automatically
enters the Back-up State. In this state, the non-critical loads are disconnected, and the entire
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system is powered by the BESS and, if available, by the PV power. This state is maintained
until the grid is operative again.

The next condition to be checked is the High Priority event, which occurs twice a day:
once when shifting from the PT period to the OT period and the other when changing from
the OT period to the PT period. In this case, the EMS operating mode changes completely,
as described below in the normal priority operate mode.

The EMS operates in the normal priority mode most of the time, as the very high
priority mode only takes place when a grid outage occurs and the high priority mode
two moments a day. During the OT period, the BESS is charged to the desired SoC level,
which is set by the designer according to the BESS characteristics. Once the BESS is charged,
it goes into a standby mode. Conversely, during the PT period, the BESS is discharged in
an appropriate manner, considering their characteristics, to guarantee suitable discharge
currents and levels to prolong its lifespan and optimize its total capacity [55]. At the same
time, PV production is considered in order to choose the moments when it is appropriate to
use the island mode of operation in which PV and BESS are responsible for powering the
entire BTS by disconnecting it from the grid. It is important to note that all state transitions
in this mode of operation are made by applying hysteresis to the PV thresholds of state
switching to ensure as few transitions as possible, thus avoiding high-frequency state
changes. Following this approach, the Cloud State is implemented to prevent that if a
drop in PV production is produced by an occasional cloud, no reconnection to the grid
takes place.

This strategy is aimed at optimizing the management of the BESS by ensuring that the
discharge currents of the BESS are within the parameters set by the manufacturer and that
the depth of discharge chosen maximizes the relationship between the number of BESS
cycles and the capacity of the BESS [55].

As an extension of this EMS, in installations where more PV power is installed than
the amount of load demanded by the BTS, a new battery state could be considered where
the BESS is also charged during the PT period with the surplus of PV. To this end, the BTS
PV production forecasts [56] could be used to calculate the periods during the day when
this surplus could be produced and, in this way, support the OT charging strategy.

To realize the economic study of the savings obtained with the implemented EMS,
it is essential to know the price differential between the PT and OT, as well as the BESS
characteristics: battery efficiency, optimal depth of discharge and number of life cycles.
For a PV system, it is fundamental to determine the amount of power generated according
to the location of the installation as well as the prices in the production hours. In Section 4.4,
a study is carried out for the specific case study, also obtaining general conclusions for any
market and location.

3.5. Interface System—HMI

The aim of the HMI (Human-Machine Interface) is to display the collected data from
the MG-based BTS and the control variables. It also allows the manual operation over the
MG-based BTS to be performed. This interface continuously communicates with the local
controller to coordinate the operation of BTS and the data monitoring. The HMI has two
operational modes: (i) operator mode aimed at manually manipulating all controllable
variables of the MG-based BTS and taking measurements without using the local controller
processes; and (ii) normal mode, which just acts as a graphical interface to display all the
information compiled by the controller and, therefore, by the MG-based BTS. The HMI
is implemented using Node-RED, an open-source software which provides a web-based
dashboard facilitating its use for any device inside the same network. Figure 13 shows the
HMI’s appearance.
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4. Results
4.1. Experimental Setup

For the experimental setup, an MG-based BTS has been developed with a rated load
power of 3 kW, using the same RF equipment and power amplifiers as those installed in
3-kW BTSs. The sizing of the PV system must consider the space available at the BTS site.
Nevertheless, a solar charger controller with MPPT and rated power of 2.7 kW for a BESS
of 48 V/190 Ah (composed of four lead batteries) and nine 300-Wp PV panels [57] in a
3 × 3 configuration (3 kW PV power peak) are used in the experimental setup. The charger
controller, the BESS and the non-critical loads are connected to the DC bus as seen in the
Section 2.2 and shown in Figure 2.

The tests have been performed with a maximum of two critical loads (2 kW) and one
non-critical load (1 kW). Figure 14a shows the interior of the main cabinet of the MG-based
BTS and Figure 14b shows the PV installation including the meteorological station.
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4.2. Use Case

In this section, the results obtained with the plant described in the previous section
are shown. The first step is to set the design parameters of the EMS according to the
characteristics of the plant and the prices of the Spanish energy market in winter time:
PT, period from 12:00 to 22:00; OT, period from 22:00 to 12:00; SOCmin, 35%; SOCmax:
95%; THPV , 1900 W; TH−PV , 1800 W and TH+

PV : 1950 W. The OT and PT values are set by
the Spanish energy market. The SOCmax and SOCmin are based on the battery datasheet
provided by the manufacturer, which sets an optimum DoD of 60%. The PV threshold
is also defined considering the battery datasheet, stating that the power provided by the
BESS is always below 2 kW and most of the time around 1 KW or less. A hysteresis value
of 100 W for the PV power is also set to avoid frequent state transitions which could be
caused by small oscillations of PV.

Once the design parameters have been described, Figure 15 shows the results obtained
in a 24-h test. The test starts at 6.00 a.m., on the 22nd of December 2020, to facilitate the
comprehension of the experiment, since it begins in a state in which the BESS is already
fully charged to the level defined by the SOCmax parameter.
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Figure 15. Use Case: (a) energy prices in the market for the day under study; (b) Instant Power PV production, Average
power PV over the last 15 min and irradiance; (c) Power consumed by critical and non-critical loads, power consumed and
delivered by the BESS and power delivered by the grid; (d) SoC level of the battery; (e) EMS states.

Figure 15a presents the hourly energy prices. It can be seen that the PT period lasts
from 12:00 to 22:00 h and the OT period from 22:00 to 12:00 h. The strategy designed takes
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advantage of the electricity price difference between the two periods, which is around
0.6 €/kW.

Figure 15b shows the generation of PV power, on a mostly sunny day with different
types of clouds to demonstrate the potential of the algorithm. The PV power is shown
in blue, the 15-min average PV power in yellow and the irradiance is depicted in red.
Analyzing the correlation between the irradiance and PV power measurements, it can be
seen that the system is tracking maximum power at all times. The effects produced by the
clouds and the potential to use the average PV over the last 15 min is described below,
including a zoom of the figure in this working area, Figure 16.
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Figure 16. Zoom of use case in the tariff change from OT to PT. (a) Instant Power PV production, Average power PV over
the last 15 min and irradiance; (b) power consumed by critical and non-critical loads, power consumed and delivered by
the batteries and power delivered by the grid; (c) EMS states.

Figure 15c shows the power consumed by the loads, the power drawn from the
grid and the power flow from/to the BESS. Negative values for the power represent
consumption and positive values represent supply. The power consumed by the critical
loads are shown in blue. These loads have a rated power of 2 kW and are always connected
to the power supply. The power consumed by 1-kW non-critical loads are shown in red.
These loads are disconnected when the EMS enters the State 5 or Cloud State, which is
used to keep the installation in island mode while protecting the maximum discharge
current of the BESS. Finally, the power provided to or withdrawn from the BESS is depicted
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in yellow, and the power drawn from the grid in purple. As expected, the installation
consumes all the energy provided by the PV system, with the support of the grid and the
BESS when required.

The BESS charging and discharging strategy is represented in Figure 15d, which shows
the BESS SoC. It can be appreciated that the BESS is discharged to the desired level, SOCmin,
35%, in the first hours of the PT period, from 12:00 to 18:10. During this time, the BESS
powers part of the installation, supporting the PV and the grid supply. This minimizes
the power drawn from grid in the period of time when the energy is more expensive,
reaching the stage where the installation works without drawing power from the grid,
which happens when the PV exceeds the 2 kW zone. Then, the BESS is charged from
the grid to the desired level SOCmax, 95%, in the OT period when the energy is cheaper,
from 22:00 to 04:45, to be ready for the next day.

Finally, in Figure 15e, the graph representing the states of the EMS is detailed. In the
initial part of the experiment the system is operating in State 2 since the BESS is fully
charged. The EMS remains in this state until 12:00 when the tariff changes from OT to PT.
Furthermore, the graph shows how the BESS is discharged from 12:00 to 18:10, thereby
reducing the power drawn from the grid. In this case, the EMS goes through several states,
which are described in detail in Figure 15. From that moment, the system returns to the
No Battery State or State 2, as it was discharged to the predefined level. At 22:00 with the
change from PT to OT, the BESS is charged taking advantage of the lower prices, State 1
from 22:00 to 04:45.

As mentioned above, in order to describe more precisely the central part of the day
in which most states are involved, in Figure 16 a zoomed-in section of Figure 15 with the
results between 11:30 and 15:30 h is showed..

At 12:00 h, there is a tariff change from OT to PT, and since the PV power generated
is greater than 1900 W, the system is working in island mode using the energy stored in
the BESS (states 4 and 5). It can also be seen in the graph that between 12:00 and 13:45,
the system, taking advantage of the Cloud State or State 5, is capable of maintaining itself in
island mode, while protecting the BESS thanks to the disconnection of the non-critical loads
when the occasional crossing of a cloud is detected. This is done by working out the 15-min
average PV power in the State 5, which avoids occasional PV fluctuations, which cause
high frequency changes from island mode to grid mode, while ensuring that the system
does not stay for an excessive amount of time in State 5 in which the BESS may have to
assume 2 kW of load and non-critical loads are disconnected.

On the other hand, when the PV power is not sufficient to guarantee island mode
all the time, the system relies occasionally on the grid so as not to force the BESS to
maintain powers greater than 1 kW for long periods of time caused by longer cloud sky.
This parameter results in a trade-off and is modified according to the amount of signal that
is integrated to compute the PV average, in this case 15 min. This situation is presented
from 13:45 to 14.10, when there is support from the grid.

Finally, from 14:10, the PV power generated is not enough for island mode and the
system is maintained in State 3 until the BESS reaches the SoC value of 35%. During this
state, the BESS powers the 1 kW non-critical load independently, while the PV system and
the grid power the critical loads, 2 kW.

4.3. Smart Sensing Operation

As has been described, all the sensors include communications capabilities, smart pro-
cessing based on low-cost hardware and cloud computing facilities for predictions and
cooperative work among different BTSs.

Going one step further, a set of controllable MG-based BTSs can be aggregated through
a centralized management in the shape of a Virtual Power Plant (VPP), which represents
a controllable portfolio of BTSs. Consequently, from a VPP perspective, each MG-based
BTS is seen as an aggregated controllable VPP node which can interact with other VPP
nodes, i.e., other BTSs, with the aim of facilitating the integration of the BTSs into the grid.
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Therefore, a hierarchical network structure with a hierarchical control strategy involving
both concepts, i.e., microgrid and VPP, can constitute a feasible solution to the challenge of
coordinating several BTSs to improve performance.

To allow this cooperative operation mode, the sensors included in the MG-based BTS
could provide the EMS system with irradiance predictions in order to better adjust the load
and the BESS connection strategy [56]. These predictions are possible because the data
provided by the different sensors is stored and processed both locally and in the cloud,
thus constituting an intelligent sensor strategy. Additionally, in installations where the PV
power installed is greater than the amount of load demanded by the BTS, based on power
predictions, a new battery state could be considered where the BESS is also charged during
the PT period with the energy surplus from the PV system.

4.4. Economic Study

To carry out an economic study, a general methodology is developed to characterize
the savings provided by the proposed strategy in different electricity markets, for different
batteries and PV power installed. The most important parameter is related to the market
and is based on the average price differential between the PT and OT for battery savings
and the energy prices during the hours of PV production.

To make the specific calculation, the Copernicus Atmosphere Monitoring Service [58]
is used to calculate the power and the moments when the PV energy is produced at
the location of the BTS. By performing these calculations for the last year, savings of
153.93 €/kW of installed PV power are obtained; the total savings are 461.78 € for the 3 kW
PV installed. Considering an installation price of 1000 €/kW installed, the PV installation
return on investment occurs after 6.5 years.

In the case of the BESS, the calculations are based on the datasheet provided by the
manufacturer, which sets a battery discharge efficiency of 85%, an optimum Depth of
Discharge (DoD) of 60% and 1500 cycle life for the battery used in the BTS. In addition, it is
assumed that these batteries are normally changed every eight years (2920 days); since a
cycle is carried out every day, a factor of 0.513 (1500/2920) is applied. This way, the number
of days per year that the strategy can be applied can be computed, to match the end of
BESS life with the time when the BESS would be replaced. Taking into account that the
Spanish average daily price differential between the charging and discharging hours of a
whole year is approximately 0.09 €/kWh, the annual savings obtained with a BESS with
the described characteristics is 16.8 €/kWh of installed capacity. If the correction factor for
the batteries to last eight years is considered, the savings obtained is 8.63 €/kWh for each
of the eight years. The total annual savings for the installed battery capacity, 9.12 kWh,
is 153.26 €/year without the correction and 79.73 €/year after applying the factor.

Finally, Table 2 provides a summary of the obtained results for a BTS with 2 kW of
critical loads and 1 kW of non-critical load with energy supplied by the Spanish energy
market, considering a daily price differential between the peak and off-peak hours of
approximately 0.09 €/kWh.

Table 2. Results summary.

Characteristics Annual Savings Total Annual Savings

PV Peak power = 3 kW 153.93 €/kW 461.78 €

BESS

Capacity = 9.12 kWh

16.8 €/kWh 153.26 €
DoD = 60%

Efficiency = 85%

Cycle life = 1500
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5. Conclusions and Future Work

This paper introduces a new BTS HW/SW architecture based on an MG paradigm,
which allows an efficient energy management strategy to be implemented through a local
EMS. The key function of the EMS is to derive profit from self-consumption of photovoltaic
energy generated on the BTS site. With this aim, the EMS implements a load-shedding
approach, which depends on the available energy and is applied to non-critical loads.
Furthermore, a controllable BESS is used, in which the charging and discharging cycles are
optimized to increase its lifespan. Thus, the power supply of conventional BTSs has been
entirely transformed into a more sustainable solution by adding new HW/SW elements,
which have been described in detail, namely: (i) a monitoring system for determining
the value of several electrical and environmental parameters; (ii) electronics to control the
energy flow; (iii) a local EMS system; (iv) an IEC 61850 compliant model for the BTS; and
(v) a wireless weather station. The proposed HW/SW architecture has been experimentally
validated on a pilot BTS plant subjected to different test and weather conditions. Finally,
for a two-tariff pricing scheme which is usually offered by energy providers in the Spanish
electricity market, annual savings of 16.8 €/kW per installed battery power can be obtained.

A benefit of this system is that it can be applied to both new and existing installa-
tions, providing a two-way connection to the electricity grid, photovoltaic generation,
smart measurement systems and the required management software, all integrated in a
flexible and low-cost HW/SW architecture. More importantly, by adopting an MG-based
model, the transformed BTS can also be regarded as an aggregated controllable VPP node.
This greatly facilitates the integration of several BTSs into the grid, thereby improving
performance by developing a hierarchical network structure based on a hierarchical control
scheme in which both the MG and VPP approaches are adopted. Therefore, within the
framework of the MG-based BTS architecture proposed in this work, the feasibility of
injecting energy into the AC network can be demonstrated by implementing more complex
EMS algorithms within larger microgrids for optimal battery management, relying on
meteorological information to forecast PV power generation. These are the new challenges
which the authors are currently addressing.
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Abstract: Solar energy penetration has been on the rise worldwide during the past decade, attracting
a growing interest in solar power forecasting over short time horizons. The increasing integration
of these resources without accurate power forecasts hinders the grid operation and discourages the
use of this renewable resource. To overcome this problem, Virtual Power Plants (VPPs) provide
a solution to centralize the management of several installations to minimize the forecasting error.
This paper introduces a method to efficiently produce intra-day accurate Photovoltaic (PV) power
forecasts at different locations, by using free and available information. Prediction intervals, which
are based on the Mean Absolute Error (MAE), account for the forecast uncertainty which provides
additional information about the VPP node power generation. The performance of the forecasting
strategy has been verified against the power generated by a real PV installation, and a set of ground-
based meteorological stations in geographical proximity have been used to emulate a VPP. The
forecasting approach is based on a Long Short-Term Memory (LSTM) network and shows similar
errors to those obtained with other deep learning methods published in the literature, offering a
MAE performance of 44.19 W/m2 under different lead times and launch times. By applying this
technique to 8 VPP nodes, the global error is reduced by 12.37% in terms of the MAE, showing huge
potential in this environment.

Keywords: power forecasting; long short-term memory recurrent neural network (LSTM-RNN);
virtual power plant (VPP)

1. Introduction

Around the world, the full deployment of solar energy is being facilitated by several
factors including, but not limited to, the reduced price of solar panels; environmental, polit-
ical and social concerns; and solar energy undercutting utility prices, inter alia. According
to [1] global installed capacity will double every two years; however, significant factors
have been identified which impede the speed at which solar dominance can be achieved: (i)
lack of investments in efficiency, (ii) insufficient government incentives, and (iii) regulatory
constraints. Small-scale Photovoltaic (PV) installations such those in the residential sector
benefit from self-consumption by shifting a load from hours when electricity prices are high
to hours when the PV energy is being generated, thereby achieving electricity bill savings.
Going one step further, the aggregation and coordination of several PV installations in the
shape of a Virtual Power Plant (VPP) with the accurate forecasting of global production
facilitates its integration into the network [2]. Consequently, the increasing PV penetration
can lead to the increasing aggregation of PV systems into VPPs. However, these new
business models are difficult to implement due to the previously mentioned regulatory
constraints.
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Power forecasting along with load demand and energy prices, for different time
horizons and resolutions, are factored into the equation. For VPPs, spatial horizons should
also be considered. Forecasting methods can be classified according to different factors,
such as: the forecasted parameter (irradiance or power), the time horizon and resolution,
the lead time, the model approach, and the nature of the forecasting statistic. Regarding
the forecasted parameter, two different alternatives exist: direct [3] and indirect [4]. The
direct method predicts the solar power through historical datasets of PV power generation
and weather conditions. Indirect forecasting differs from the direct method in that it
firstly predicts the solar irradiance and then, the solar power is calculated by using a
performance model of the PV plant. As far as the time horizon is concerned, four categories
can be found [5,6]: nowcasting (from 1 min to several minutes) which is used for real-
time optimization in Energy Management Systems (EMSs); short-term forecast (from 1 h
to several hours) used for intra-day market participation and for day-ahead operation
optimization; medium term forecast (from 1 month to 1 year); and long-term forecast
(up to several years). Time resolutions may range from 1 minute for real-time market
operations, and 15-minute periods for load-shifting strategies and for optimizing Battery
Energy Storage Systems (BESSs), to 1 hour for longer time horizons used by consumption
monitoring, and a 1-week resolution for 1-year time horizons which can be used to identify
consumption trends [7]. The lead time can be defined as the time difference between
the instant when the forecast is launched and the occurrence of the forecasted value,
considering the forecast horizon as the maximum forecast lead time. Forecast errors
increase with forecast lead time due to the atmospheric motion. As for the model, the
optimal method for solar irradiance prediction depends on the forecast lead time [8]. In
this regard, four approaches have been widely used [9]: (a) time-series-based statistical
models whose aim is to identify patterns between historical datasets and the output
parameters; (b) machine learning (ML) models mainly based on artificial neural networks
(ANNs), which use historical datasets to learn the dependency between the past and the
future; (c) physical strategies which utilize Numerical Weather Prediction (NWP) and
PV models for solar power forecasting; and (d) hybrid models which explore different
algorithm combinations with the aim of improving forecast accuracy and reducing the
computational burden of online forecasting applications [5]. The objective of all the models
is to improve forecasting accuracy by minimizing some quality metrics, usually the sum
of squared errors. The existence of different models raises the question of whether one
method is better than the others. This is particularly true for statistical and ML models.
Some studies conclude that statistical models outperform ML models [10] while others
state the opposite [11,12]. However, this interpretation may appear to be fairly simplistic
without taking into account the dataset size [13], the variable being forecast [14], the time
horizon [15], or the computational load [16]. Although historically, the forecasts have been
dominated by statistical methods, over the last decade there has been a significant shift
toward ML strategies [17]. This comparative study is beyond the scope of the paper.

Regardless of the method used, the existence of forecasting errors poses a major
challenge in optimizing the PV plant operation. While minor forecasting errors may
not adversely affect the PV plant operation, larger errors can produce negative effects in
the optimization models. Uncertainties hinder the performance in terms of accurately
assessing the variables during the PV plant scheduling and operation. Forecast uncertainty
quantification is, therefore, crucial. For this reason, considering the prediction intervals,
which account for the uncertainty, provides additional accurate information about the
expected values in terms of the range of plausible values and the probability assigned
to each of them [17,18]. Another solution to the problem involves the aggregation of
several PV sites for a unique forecasting strategy, since the error is significantly reduced
as the number of installations increases. To prove this, in [19] the authors present an
approach to forecast the PV power from irradiance prediction maps, obtaining the power
forecast of 200 sites located in Germany. Results show that the error is reduced from a
Root Mean Square Error (RMSE) of 0.11 kW/kWpeak for single sites, to 0.06 kW/kWpeak
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for an area of 220 km × 220 km with multiple sites. The distance among sites is also an
important factor which influences accuracy, since the error is significantly reduced when
the distance between facilities increases. This strategy provides a powerful solution in the
context of VPPs, since multiple systems or nodes are controlled, managing Distributed
Generation (DG) units, Energy Storage Systems (ESSs), flexible loads and Information and
Communication Technologies (ICTs) [20]. Regarding the types of DG units, PV systems
can be considered as the easiest and most cost-effective Renewable Energy Sources (RESs)
to exploit, mainly for households, where it is possible to turn PV installations into flexible
VPP nodes [21].

Finally, as stated above, for indirect forecasting approaches, performance models of
PV systems are required to obtain the prediction of solar power generation. To this end,
a strategy that works under arbitrary conditions of irradiance and temperature must be
adopted. Methods that exhibit these key characteristics are the Osterwald’s method [22],
which stands out by its simplicity, or similar studies from the literature that improve the
performance of the Osterwald’s method by adjusting the results under low irradiance lev-
els [23,24]. When the operating point of the PV panels is known, alternative methods, such
as those reported in [25,26], can improve accuracy, while other research uses parametriza-
tion models to simplify the process [27]. Sometimes, the irradiance of the site is measured
on a horizontal plane, obtaining the Global Horizontal Irradiance (GHI). However, the
panels are on a different plane. This is typical in satellite measurements but can also be the
case in installations with multiple Maximum Power Point Trackers (MPPT) or PV panels
with axis trackers. To solve this problem, a conversion process is needed, using: (i) different
expressions to tackle the problem step-by-step by separating the global components into
direct irradiance, diffuse irradiance, and albedo, modifying the angle of these components
to obtain the global irradiance on the plane of the panel, estimating its losses to obtain the
effective irradiance, or (ii) an approach that simplifies the process [28]. In this regard, it
becomes crucial to reduce the complexity and the computational burden placed on the
forecasting algorithms. With this in mind, this work makes use of the Osterwald’s method
to calculate the PV power, since low irradiance values (G < 125 W/m2) are barely existent
in the dataset and a generalization of the algorithm for VPP environments leads to better
results. Satellite data are also required in this work since they offer information on the GHI,
which is converted into irradiance on the tilted plane by following the steps stated above.

The forecasting strategy developed in this paper, uses long short-term memory recur-
rent neural networks (LSTM-RNNs) and is based on an indirect approach in which the
irradiance is forecasted first and the output power is calculated by using the PV model.
LSTM-RNNs have been used in several works, achieving satisfactory results on account of
their recurrent architecture, which includes memory units [16]. These allow the ANN to
identify temporal patterns from the historical data of the forecast variable, thereby reducing
the forecast error in comparison to other alternatives. The authors in [29] propose a PV
power forecasting strategy based on LSTM-RNN which is compared with other methods
without memory units, showing their limitations in terms of not being able to model the
dynamics of the PV output power data. In [30] a LSTM-RNN with only exogenous inputs,
e.g., dry bulb and wet bulb temperatures, and relative humidity, is used to forecast the
day-ahead solar irradiance.

The main contributions of this paper are summarized as follows: (i) the PV forecasting
method is applied to a VPP environment to reduce the forecasting error, which is mod-
elled as a function of two well-defined parameters called lead time and launch time; (ii)
prediction intervals are used to model the forecast uncertainty as a function of not only the
lead time and the launch time, but also the Cloud Cover Factor (CCF), which allows the
type of day to be identified; (iii) the input data for the forecasting strategy are derived from
free-of-charge open-access data sources, offering a viable and cost-effective solution; and
(iv) a trade-off between accuracy and computational burden facilitates the application of
multiple PV power forecasts at different locations, within the context of a VPP.
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The remainder of this paper is organized as follows: Section 2 introduces the frame-
work for the intra-day power forecasting strategy; the experimental results are presented
in Section 3; and finally, some conclusions are drawn in Section 4.

2. Intra-Day Power Forecasting Framework

The proposed intra-day power forecasting strategy is depicted in Figure 1. It consists
of four main blocks, namely: (i) input data; (ii) data preprocessing; (iii) model design and
forecasting; and (iv) VPP coordination. The input data, which come from different sources,
are fed to the preprocessing stage. The preprocessing step prepares the data as required
by the training and forecasting models. Finally, the output of the forecasting algorithms is
used as the input of the EMS of the VPP. In the following, the different parts are explained
in detail.
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2.1. Input Data

The input data consist of three specific categories according to the source and type of
the information provided. The first category includes cloudiness and temperature, which
are obtained from forecast maps, at different spatial and temporal scales, generated and
regularly published by the Spanish agency of meteorology AEMET, via NWP [31]. The
cloudiness dataset is used to define the Cloud Cover Factor (CCF), which indicates to
what extent a cloud area on the NWP-based cloudiness maps creates shadows on the
PV installation. This parameter is used to define the type of day: sunny, cloudy, and
overcast. This allows the dataset to be split in different groups to create prediction intervals.
Temperature data, on the other hand, are used to estimate the cell temperature of the solar
panel at the prediction instant [32]. NWP-based weather maps are of great interest since
some useful weather variables might not be available in solar installations. The deviation
in the estimation of the cell temperature is then assessed by using the data obtained from
the experimental setup, which is located at the Polytechnic School of the University of
Alcala (Spain) and consists of a 2.97 kWp PV facility with a meteorological station that
gathers information of GHI, temperature and cell temperature [33]. The dataset, obtained
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from the PV facility, is taken during the period between 1 June 2020 and 31 May 2021,
with a resolution of 15 min. In the second category, the Global Horizontal Irradiance
(GHI) measurements are obtained from two sources: (i) a pyrometer, which is installed
in the experimental setup and 30-second GHI measurements are taken and stored on the
cloud (ThingSpeak) [34]; and (ii) the Copernicus Atmosphere Monitoring Service (CAMS),
which provides a free historical dataset of the incoming surface solar irradiance that can be
used for any purpose. The data accuracy is ensured by a regular quality control against
information from in situ systems such as ground stations [35]. At the PV facility, the Mean
Absolute Error (MAE) committed for the temperature with respect to NWP maps is 2.12 oC.
Likewise, the MAE obtained between the CAMS and the PV station is 46.97 W/m2, for
the whole year of measurements. This database is used to provide the forecasting models
with a large GHI dataset for training purposes. Finally, the third category comprises
non-stochastic data, such as sun position, used for the CCF calculation to determine the
type of day; the extraterrestrial radiation for generating the forecasts and working out the
irradiance on the tilted plane of the PV modules; and the installation parameters which are
required for the PV power forecasting, as is explained in the following sections.

2.2. Data Preprocessing

The information obtained from the NWP-based weather forecasts must be transformed
into numerical values. The forecasting time resolution is set to 15 min, mainly to follow
the European Electricity Market Directive to be implemented in the coming years, which
sets 15-minute energy matching periods. However, the AEMET only generates the weather
maps hourly. This poses the inherent problem of merging time series with different time
steps. For instance, for the PV power forecasting, the cell temperature (based on the ambient
temperature) and the irradiance on the tilted plane are required. Since the latter has a
time resolution of 15 min, so too should the time resolution of the time series for the cell
temperature. To this end, quadratic interpolation is performed to create an oversampling
of the NWP time series. Changes in the ambient temperature are usually smooth and
it is assumed that the measurements shown in the NWP maps are defined with their
intermediate values, since the Darboux property [36] is accomplished.

To prove the accuracy of this approach, Figure 2 depicts the ambient temperature
obtained from the AEMET forecasts with respect to the values measured by a weather
station located in the PV installation. The remarkable accuracy of the weather forecast for
the temperature is noticeable.
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Figure 2. A comparison between the ambient temperature measured at the station and the tempera-
ture obtained from the AEMET website.

The CCF, on the other hand, is obtained by processing cloudiness information from
weather maps. This parameter, which allows the type of the day to be defined, is used
to identify those periods of time for which the presence of clouds can alter the PV power



Sensors 2021, 21, 5648 6 of 21

generation over a region through blocking the sun’s radiation. The CCF is obtained using a
similar method as the work presented in [37], which provides a detailed description of how
to calculate this parameter; mainly by detecting cloud-contaminated pixels in the weather
maps that interfere between the sun and the installation.

Finally, missing data can negatively affect the accuracy of the forecasts. To fill the
missing gaps in the temperature and GHI datasets obtained from the weather station in the
PV installation, GHI satellite data and the data from the NWP-based weather forecasts are
used. Figure 3 shows an example of the reconstruction of missing data for the temperature
and irradiance time series.
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2.3. Model Design and Irradiance Forecasting

The third part in the forecasting framework deals with the LSTM-RNN-based model
design and the forecasting itself, which aims to: (a) predict the mean PV power for a
particular day with a 15-minute time step at the experimental PV facility, and (b) compute
prediction intervals intended to show the likely uncertainty in the forecasting outcome [17].
This information constitutes an important input for the EMS in the VPP.

Figure 4 shows the flowchart of the model design and forecasting. The forecasting
process starts with the LSTM-RNN model definition based on an iterative approach. Five
years of GHI measurements from the Copernicus databases are utilized in the training
process. The LSTM-RNN architecture depends on the characteristics of the input and
output data and the cross-validation process. When creating the LSTM-RNN, 10% of the
training set is used as the cross-validation set, optimizing the number of hidden layer
units, mini-batch sizes, regularization factors, learn rate, and epochs (Table 1). Once these
parameters are defined, the algorithm is extended to be used for future forecasts. The
error in the training process is minimized by computing the RMSE, taking into account
not only the proper convergence of the system but the computational time of the process.
Squared errors lead the convergence in the LSTM-RNN as they are responsible for avoiding
atypical errors, which have remarkable importance in energy management tasks. The
architecture is composed of two input layers, one recurrent hidden layer (based on fifty
memory blocks), and one output layer (Table 1). The memory block includes one or
more self-connected memory cells along with four multiplicative gates (input, output,
update, and forget gates). These gates provide the mechanism whereby the information
can be stored and accessed over long periods of time, thereby avoiding the vanishing and
exploding gradient problem posed by the conventional RNNs [38], e.g., the activation of
the cell can be delayed, providing that the input gate remains closed to new inputs which
can later become available by opening the output gate. The purpose of LSTM-RNN is,
therefore, to model long-range dependencies. When training with sequential data, Gated
Recurrent Unit (GRU), LSTM-RNN, and the Convolutional Neural Network (CNN)-LSTM
are predominant in the literature [16]. As for CNN-LSTM models, they ensure higher
accuracies for predictions based on more features which significantly compromise the
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computational time. It is worth noting that only two variables are used in this work.
In [39] the authors show that these deep learning techniques ensure a higher accuracy than
conventional ANNs or Support Vector Machines (SVMs) in GHI short-term forecasting.
Consequently, LSTM-RNNs are used in this paper for the forecasting process. LSTM-RNNs
achieve remarkable forecast accuracy with different prediction intervals, on account of
their ability to memorize long historical data and determine the optimal time lags for the
time series. These features are fundamental in the context of irradiance forecasting since
there is no previous knowledge of the relationship between forecasts and the length of the
historical dataset.
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Table 1. Parameters selected in the LSTM-RNN.

Number of Features 2 (GHI, Extra-Terrestrial Radiation)

Hidden layer units 50
Number of responses 1

Mini-batch size 256
Regularization factor 5× 10−4

Optimizer Adam (β1 = 0.9, β2 = 0.999, ε = 1× 10−8)
Initial learn rate 0.01

Learn rate schedule Piecewise (periodically)
Learning drop 0.5 every 20 epochs

Epochs 70
Limited gradient 1

Once the LSTM-RNN model has been devised, the GHI prediction is made, followed
by the estimation of the effective irradiance on the tilted plane of the PV module. Firstly,
the calculation of the effective irradiance uses information from the two components of
irradiance in the horizontal plane (direct and diffuse, since the albedo is zero in this case),
calculated as a function of the clarity index (kth), to obtain the diffuse fraction (kdh) [40].
Once this information is obtained, the conversion into the tilted plane is estimated with the
diffuse irradiance [41] and the albedo:

albedo = ro ghm0 (1− cosβ)/2 (1)
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where ro is the albedo coefficient, considering that a value of 0.2, ghm0 is the GHI and β is
the tilted angle of the panels. Finally, the effective irradiance is determined by considering
angular [42] and spectral [43] losses for p-Si modules and a typical moderate dust degree
of DT = 0.97 for the installation.

The Osterwald’s model [22] is used to convert the effective irradiance into PV power:

PDC = SF ηDC Ppeak
Gpanel

GSTC
(1 + δPm(Tcell − Tcell,STC)), (2)

where PDC is the PV power forecasted; SF represents the shading losses due to the sur-
roundings of the installation, determined in Section 3.2 for this particular case; ηDC = 0.927
includes wiring losses, module tolerances and mismatch losses; Ppeak = 2.97 kW is the
peak power of the installation; Gpanel is the effective irradiance of the panels previously
calculated; GSTC = 1 kW/m2 is the irradiance under Standard Test Conditions; (STC),
δPm = −0.4%/oC is the temperature coefficient of the PV panels of the installation; Tcell is
the cell temperature; and Tcell,STC is the cell temperature under STC.

The cell temperature can be determined with the following expression, assuming the
wind speed is negligible, since it can be considered as a nonsignificant effect complex to
model because the wind does not affect each panel in the facility equally:

Tcell =
Tcell,NOCT − Tamb,NOCT

GNOCT
Gpanel + Tamb, (3)

where Tcell,NOCT = 45 oC is the cell temperature under Normal Operating Cell Temperature
(NOCT) conditions; Tamb,NOCT = 20 oC is the ambient temperature under NOCT conditions;
GNOCT = 0.8 kW/m2 is the irradiance under NOCT conditions; and Tamb is the ambient
temperature, obtained from NWP forecasts.

Then, with the historical dataset of PV power forecasts, it is possible to compute
prediction intervals for new forecasts. A prediction interval is an interval estimate for
an unknown future value [17] which can be regarded as a random variable at the time
when the prediction is made. In this paper, statistical prediction intervals are employed
based on the work presented in [44], considering a Laplacian distribution model for the
error as a function of the lead time, the launch time, and the type of day. Figure 5 shows
the intervals for a specified day with 90% confidence, providing additional, valuable
information from the forecast. PV power generation strongly depends on the weather
conditions, the latter varying according to the season. This greatly hinders the ability of the
forecasting algorithms to deliver accurate predictions, causing some degree of uncertainty
which should be evaluated. Prediction intervals constitute the tool that can be used to
express the degree of uncertainty of point forecasts which add a given confidence level.
Additional details about the definition of the intervals, such as group selection and accuracy,
are further explained in Section 3.3.
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3. Results

This section presents the results obtained by the proposed intra-day forecasting strat-
egy for VPP, which is divided into different steps: (a) GHI forecasting for a real VPP node
and for an emulated VPP; (b) PV power estimation from the GHI forecasting output; (c) the
quantitative assessment of prediction intervals; and (d) VPP scheduling. Firstly, the results
are validated for a real PV installation, which plays the role of a VPP node. The PV installa-
tion is located in the Polytechnic School, at the University of Alcala (Madrid). Secondly, the
strategy is developed for an emulated VPP, by using several ground-based meteorological
stations uniformly spread over the Community of Madrid [33]. In order to evaluate the
effectiveness of the model, a performance comparison in terms of accuracy/error, with
respect to other methods proposed in literature, is also performed.

3.1. LSTM-RNN-Based GHI Forecasting for a Real VPP Node

The LSTM-RNN-based GHI forecasting for the real VPP node is performed by using
measurements of irradiance taken in the PV facility located at the Polytechnic School of
the University of Alcala (Spain). The initial training dataset is based on a 5-year period of
irradiance values obtained from the CAMS dataset, since RNNs require a large amount
of data for the learning process and GHI measurements are scarce in new installations.
However, the test dataset is based on real measurements taken during the period from
1 June 2020 to 31 May 2021. Therefore, a whole year of real GHI values under different
seasonal weather conditions are used to assess the accuracy of the forecasting approach.
With a resolution of 15 min, the forecasting process starts at sunrise and ends at sunset.
Furthermore, a new prediction is launched every 15 min and the dataset of irradiance is
then updated, which ensures the accuracy of the results obtained. The network is trained
with new measurements every day, during the night, to yield the best results. The GHI
forecasts are given as a function of both the launch time and the lead time, parameters
which are further defined, with the aim of computing the prediction intervals.

As far as the error assessment is concerned, this work relies on two types of metrics:
(i) scale-dependent metrics such as the MAE and the Root Mean Square Error (RMSE);
(ii) percentage-error metrics, such as the relative Mean Absolute Error (rMAE); and (iii)
the relative Root Mean Square Error (rRMSE). Absolute values provide information about
the average forecasting whereas the quadratic values are more sensitive to outliers, the
combined analysis of the two allows for a thorough study of the results.. Error percentage
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values, on the other hand, provide an intuitive understanding of the error committed,
which allows for a fair comparison to be conducted since the dependence on the magnitude
is removed. However, when these values are near zero, scale-dependent metrics constitute
the preferred option. The error metrics are summarized in Table 2, where Yt is the measured
data at time t, Ŷt is the forecast value at time t, and T is the length of the time series used to
assess the accuracy of the algorithm.

Table 2. Metrics used to evaluate the model performance.

Metrics Scaled (W/m2) Percentage (%)

Absolute MAE = 1
T

T
∑

t=1

∣∣Yt − Ŷt
∣∣ rMAE =

1
T ∑T

t=1|Yt−Ŷt|
1
T ∑T

t=1 Yt
× 100

Quadratic RMSE =

√
1
T

T
∑

t=1

(
Yt − Ŷt

)2 rRMSE =

√
1
T ∑T

t=1(Yt−Ŷt)
2

1
T ∑T

t=1 Yt
× 100

The value of Yt denotes GHI at a specific hour of the day, t, and Ŷt′ ,t is the prediction
of Yt at t′. The initial time, t0, is fixed for each day and corresponds to the sunrise. To assess
the error, two parameters are defined: lead time and launch time. Lead time corresponds
to (t′ − t) and is the difference between the time instant of the prediction and the moment
when the prediction is launched. Launch time, on the other hand, is denoted by (t′ − t0)
and is the difference between the current time and sunrise. Launch and lead time for the
predictions of a particular day are better explained in Figure 6. When the launch time is
fixed and the lead time is used as a parameter, a vector of predictions is obtained. However,
when both parameters are set to a value, a single point forecast is obtained (red diamond
in Figure 6).
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The 3D plot in Figure 7 depicts the errors as a function of the lead time and the launch
time which leads to the following conclusions. Firstly, for the scaled error, a high error
rate is observed for short launch times under medium lead times. It is expected that the
scaled error is large under the previous conditions since the radiation is high. However,
as the launch time increases, this error significantly decreases. Secondly, it was clear that
the lower the radiation, the smaller the scaled error; however, for percentage errors, the
opposite is the case; when the launch time is small (less than 1 h), the percentage error
is high, irrespective of the lead time. These plots give some insight into the prediction
behavior and become particularly useful in enhancing confidence in the prediction with
respect to other forecasting techniques. In this particular case, the intra-daily prediction is
used when the mean error is smaller than the day-ahead prediction [37]. Finally, prediction
intervals are derived from the MAE, assuming a particular distribution and splitting the
predictions into groups as a function of the lead time, the launch time and the type of day,
being very useful when a high degree of accuracy is required for the prediction.
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Finally, the predictions obtained by the LSTM-RNN used in this work are compared
with those available in the literature, which are depicted in Table 3. It is worth noting
that this comparative analysis should not be strictly considered, since each dataset can
have a relative influence on the performance. Nevertheless, some preliminary conclusions
can be drawn from the study. Firstly, taking into account other widely used techniques
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from [45], the forecast error obtained in this work, in terms of the rMAE, is much smaller
under short lead times (15 min), increasing until a similar value of the error is obtained
under large lead times (6 h). A good performance under small forecast horizons is also
obtained when comparing the results with [46] for a statistical AutoRegressive Integrated
Moving Average (ARIMA) model, in terms of the MAE, obtaining a similar error to that
of traditional RNNs, and a higher error with respect to a similar LSTM-based approach
presented in [46], despite considering other inputs highly correlated with the irradiance.
Finally, comparing the strategy presented in this paper with respect to the deep learning
techniques (GRU, LSTM-RNN, and CNN-LSTM) from [39,47–49], a similar performance
can be observed. To conclude, for small lead times, the forecasting approach introduced in
this paper yields better results than those obtained by traditional methods. However, the
forecasting error of the proposed LSTM-RNN-based method increases for higher lead times,
until a similar performance is obtained with respect to the traditional methods compared
from the literature. It is also observed that an increase in the number of inputs seems to
slightly improve the performance of the forecast approach. Adding exogenous inputs to
the forecast process is an alternative which is often used by researchers but negatively
affects the performance when those resources are not available.

Table 3. Comparison between the research results from this paper and those from other articles in the literature.

Model [Article] Error Forecast
Horizon

Time
Interval Inputs Results from This Paper

Smart pers. [45] rMAE = (8–18)%

6 h 15 min
GHI, Clear Sky GHI, Cloud

index maps, Cloud top height
maps, . . .

rMAE = (4.17–17.73) %
CIAD Cast [45] rMAE = (11–20)%

Satellite [45] rMAE = (10.5–19.5)%
WRF-Solar [45] rMAE = (12–18)%

SVM-Radial [45] rMAE = (7.5–15.5)%

ARIMA [46] MAE = 71.48 W/m2

1 h 1 h
GHI, Clear Sky GHI, Cloud

type, Temperature, Humidity,
Precipitation, Wind, . . .

MAE = 41.88 W/m2RNN [46] MAE = 41.83 W/m2

LSTM [46] MAE = 31.86 W/m2

CNN-LSTM [39] MAE = 41.88 W/m2

1 h 1 h
GHI, Temperature, Wind,
Precipitation, Humidity,

Azimuth, . . .

MAE = 41.88 W/m2

CNN-LSTM [39] RMSE = 78.17 W/m2 RMSE = 72.54 W/m2

CNN-LSTM [39] rMAE = 10.58 % rMAE = 8.72 %
CNN-LSTM [39] rRMSE = 19.75 % rRMSE = 15.1 %

LSTM [47] RMSE = (77–143) W/m2
8 h 1 h

GHI, Humidity, Cloudiness,
Temperature, Extra-terrestrial

RMSE = (72–124) W/m2

LSTM [47] rRMSE = (18.4–33)% rRMSE = (15.1–29.2) %

GRU [48] RMSE = 67.29 W/m2
1 h 1 h

GHI, Zenith, Humidity,
Temperature RMSE = 72.54 W/m2

LSTM [48] RMSE = 66.57 W/m2

GRU [49] RMSE = 58 W/m2
30 min 1 min GHI RMSE = 55.78 W/m2

LSTM [49] RMSE = 55.29 W/m2

3.2. PV Power Estimation from the Forecasted GHI

The following step consists of estimating the power delivered by the PV modules from
the GHI forecasts. To this end, the following parameters are required: (i) the prediction
time instant; (ii) the site location in terms of latitude, longitude, and altitude; (iii) the
installation characteristics, which include the orientation and inclination of the panels,
rated parameters of the PV models available in datasheets, and losses associated with each
part of the installation; and (iv) the ambient temperature, obtained from NWP maps. As
stated above, analytical techniques exist to achieve this goal and, as a result, it is possible
to quantify the error committed in the procedure.

This section focuses on two different approaches Firstly, real measurements of PV
power are compared against the estimated values of PV power obtained from real measure-
ments of GHI at the site. Secondly, the PV power is estimated from the forecasted values of
GHI, evaluating the errors associated with the whole process. The GHI conversion searches
for a reduced value of the error to maintain a similar performance to that obtained in the
previous section, using the errors to construct the prediction intervals (Section 3.3).
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Figure 8 depicts the comparison between the measured values of PV power at the site
with respect to the PV power estimation obtained from real GHI measurements taken at
the site. Three types of days have been selected: a cloudy day, an overcast day and a sunny
day. The x axis is expressed in solar time. It is worth noting that the experimental setup
at the site location has a building near the PV panels that generates partial shadows on
some of them, starting from 16:36 and continuing until sunset. This event is also modelled
in Equation (2), assuming a linear variation of this effect with respect to time (in Figure 8
SF = 0.95 at 16:36, decreasing until SF = 0.4 at sunset), and it also varies depending on
the season of the year. Results show a reduced value for the error similar to that reported
in other works [28], obtaining an rMAE = 2.54% for sunny days, an rMAE = 3.04%
for partially cloudy days, and an increased value of rMAE = 4.03% for overcast days.
In terms of the squared error, values range from rRMSE = 3.44% on sunny days and
rRMSE = 3.90% on partially cloudy days, to rRMSE = 5.95% for overcast days. The
transient characteristic of the inverter MPPT controller reveals that, in the presence of
passing clouds, the inverter operating point becomes unstable. This is the reason why the
error increases on these days. However, this does not pose any problem for the forecasting
process since the time interval is 15 min, which considerably mitigates this negative effect.
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Figure 8. Comparison between the measured values of PV power with respect to values obtained from the conversion
of real GHI measurements at the site. The selected days are: (a) a partially cloudy day (17 May 2021: rMAE = 3.04%
rRMSE = 3.90%), (b) an overcast day (1 June 2021: rMAE = 4.03% rRMSE = 5.95%) and (c) a sunny day (4 June 2021:
rMAE = 2.54% rRMSE = 3.44%).

Finally, Figure 9 depicts the forecast error in terms of the difference between the
measured and estimated PV power as a function of the lead time and the launch time. The
shapes of the figures are similar to the previous section, with similar percentage errors.
Therefore, from the figure, the same conclusions reached by analyzing Figure 7 can be
drawn: (i) the scaled error is high for short launch times and medium lead times but
decreases significantly as the launch time increases; (ii) for launch times of less than an
hour the percentage error is high, irrespective of the lead time; and (iii) the percentage error
is high at lead times higher than approximately 7 h. The forecast error, which is dependent
on the lead time and the launch time, is used to generate the prediction intervals in the
following section.
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3.3. Prediction Intervals of the Forecasted PV Power

Prediction intervals provide additional information about the plausible range of PV
energy that will be generated at the site, for a defined confidence level selected by the user.
Prediction intervals also indicate the degree of uncertainty in point forecasts. This could
avoid unexpected energy shortages or, by contrast, energy surpluses, which are less critical
than the former since the inverter can change its operational point to produce only the
energy needed, despite wasting an exploitable energy resource.

In this paper, prediction intervals are obtained based on the work carried out in [44].
Previous results show how dependent the forecast accuracy is on the lead time and the
launch time. This fact is used to split the dataset of predictions and create groups, assuming
a specific distribution which is built based on the MAE. Therefore, each group is defined
by selecting a launch time and a lead time, obtaining 365 samples per group, since a whole
year is forecasted on this research. Figure 10 shows different error distributions for launch
time values of 2, 4, and 6 h, and lead time values of 1, 2, and 3 h. In all of them, a Laplacian
distribution is considered, similar to the work carried out in [37] but as a function of the
CCF. Prediction intervals (E15m ± ps) for each subset can be defined in terms of the MAE
under this assumption: for a Laplacian distribution, a percentile p of probability (1− s)
has an interval of ps = ±MAE· ln(2s).
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More detailed distributions can be determined provided that the selected groups are
also created as a function of the CCF. However, by considering 10 groups as presented
in [37], the number of samples of each group is not sufficient to create a proper error
distribution. To overcome this drawback, the number of CCF groups is reduced to three,
using the type of day classification criteria (e.g., sunny, cloudy, and overcast). The CCF
parameter has an hourly resolution, its value is 0 when the sun is not covered by clouds
and 1 when the sunlight is totally blocked. The type of day is classified evaluating the CCF
during the daylight hours, with an hourly weighting of the amount of energy produced
during the day. After that, the k-nearest neighbors (k-NN) method is used to form the
groups, since it allows the dataset to be split in a simple way, offering an independent
solution for each site in the VPP.

The assumption of a Laplacian distribution for each new selected subset carries an
error that is necessary to quantify. The Prediction Interval Coverage Probability (PICP) [50],
in Equation (4), indicates the percentage of predicted values that are inside the interval
selected, and it must be close to the confidence level (γL). The confidence level selected
in this research is γL = 80%, although this parameter can be modified depending on the
operational risks that the site can handle: the higher the risks, the higher the benefits from
the installation:

PICP =
1
T ∑T

t=1 εt, where εi =

{
1 if xi ∈ [Li, Ui]
0 if xi /∈ [Li, Ui]

. (4)

Figure 11 depicts the absolute difference between the confidence level and the PICP
for each type of day, being an effective method when this difference is close to zero. On
sunny days, the PICP is close to the confidence level across the whole area, except for high
lead times under small launch times where the difference increases. On cloudy days, the
PICP is quite different from the confidence level during sunset. Nevertheless, the difference
is acceptable in the rest of the area. In this case, the forecast has a lesser value during sunset
since the energy produced is significantly reduced. Hence, prediction intervals also offer
valuable information on cloudy days. Finally, for overcast days, the difference between
the PICP and the confidence level increases with respect to sunny days, but the magnitude
is acceptable and the prediction intervals are still valuable. To conclude, there are some
zones with a high difference between the PICP and the confidence level. However, these
scenarios correspond to small PV power measurements with bad forecasting performance
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(Figure 9). Therefore, prediction intervals are of little value for these points, since the
strategy presented in this paper does not focus on those cases.
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3.4. Evaluation of the GHI Forecasting for an Emulated VPP

The effectiveness of the whole forecasting process has been demonstrated for a single
PV installation, which plays the role of a VPP node, along with its limitations with respect
to the launch time and the lead time. The next step consists of assessing the algorithm
performance for a set of PV facilities, forming a VPP. There are, however, no additional
PV installations available in the study. Therefore, seven ground-based meteorological
stations located in the Community of Madrid, apart from the PV facility at the university,
are used to emulate the VPP nodes. Their locations are depicted in Figure 12. These
ground-based stations are equipped with GHI sensors which allow the GHI forecasts to
be generated. As for the power conversion, the characteristics of the PV installation from
the university are used to obtain the power estimation for each emulated VPP node (peak
power, Ppeak = 2.97 kW, temperature coefficient, δPm = −0.4%/oC, and the performance
of the equipment).
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The same results as those shown in Figure 9 are used to quantify the accuracy of the
prediction. However, in this case, the PV power forecast for each station is individually
evaluated and the sum of power forecasts of the stations represents the PV power generated
by the VPP, whose forecast error is depicted in Figure 13. By doing so, the PV power
obtained at each station can be compared with respect to the total PV power forecasted.
It can be observed that the scaled values of the error (MAE and RMSE) are higher than
those in Figure 9. However, there is an 8-fold increase in the peak power with respect to a
single facility. As a result, by looking at the relative values of the error (rMAE and rRMSE)
it can be noted that the performance of the prediction increased for the VPP. The accuracy
improvement of the PV power forecast can be expressed as the difference between the VPP
forecast error and the sum of the error on each installation, dividing that value by the mean
error committed on a single installation, obtaining a mean value of 12.37% with respect to
the MAE, and 11.84% with respect to the RMSE. The shapes of the figures lead to identical
conclusions to those reached by the analysis in Figure 9. Therefore, the prediction intervals
maintain their potential value for error forecasting in the case of a VPP.
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4. Discussion and Conclusions

The technical development of VPPs must be supported by EMSs, for which PV power
forecasting is an essential part. By knowing the energy produced by each VPP node,
usually based on renewable resources such as solar technologies, it is possible to optimize
the expected profit generated by energy exchanges with the grid operator. However, it
is difficult to obtain PV power forecasts when it is necessary to gather information from
several nodes scattered throughout a wide area, especially when the input data, required for
the predictions, incur costs. This research presents a way of accomplishing this objective,
using an LSTM-RNN-based strategy to, firstly, forecast the GHI by using a dataset of
irradiance values derived from satellite data freely obtained from the CAMS, and secondly,
estimate the solar power by utilizing a PV model of the installation. The forecast is updated
during the day to achieve the highest accuracy, and prediction intervals are estimated as a
function of the MAE. This provides a useful framework to understand the behavior of each
installation that composes the VPP.

The first results provided are related to the GHI forecast for the installation and are
based on the lead time and the launch time, which allow zones with a reduced error and a
high level of confidence to be created in the shape of prediction intervals which depend on
the type of day. The GHI error, as a function of the lead time and the launch time, shows
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a low performance when the launch time is lower than 1.5 h, corresponding to sunrise.
To avoid this, the forecasting process can begin at 1.5 h after sunrise; before this time,
this research can rely on the day-ahead prediction made in [37] to obtain the irradiance
forecast. To assess the accuracy of the intraday forecast, the results have been compared
with those in the literature, achieving similar results to those obtained from deep learning
algorithms and outperforming traditional techniques. The distinction between the lead
time and the launch time means it possible to create better comparisons with respect to the
literature, but also means it is difficult to summarize the research with only one value. The
MAE committed, without considering the lead time and the launch time, is of 44.19 W/m2,
which is coherent with other studies.

Once the irradiance is forecasted, the conversion to PV power is analytically calculated,
minimizing the error, which ranges from 2.54% to 4.03% in terms of the rMAE and from
3.44% to 5.95% in terms of the rRMSE. The error committed in this case is similar to the
errors found in other articles [26,28]. The shapes of the error matrixes show similar results
to those presented above. Therefore, similar conclusions can be drawn. The global MAE
committed in this case is 137.21 W in a PV facility of 2.97 kWp.

Prediction intervals are selected once the PV power forecast is available, which allow
a range of plausible values of point forecasts to be obtained. The method considers a
Laplacian distribution of the error and distinguishes between the lead time, the launch
time and the type of day, which is selected with a k-NN algorithm as a function of the CCF.
To verify whether the boundaries maintain the associated level of confidence, the PICP is
calculated, obtaining values close to the selected confidence level of γL = 80%. In this case,
results reveal a noticeable difference between the PICP and the confidence level on cloudy
days close to sunset. However, the predictions at those hours have minor importance. It
can be concluded that the selected prediction intervals are of great relevance.

Finally, the PV power forecast is created, and the prediction intervals are selected for
the PV facility so that conclusions under a VPP environment can be drawn. In this case,
a real PV facility and seven ground-based weather stations in the Community of Madrid
are selected to emulate the VPP, obtaining an improvement in the accuracy of 12.37% with
respect to the MAE, and 11.84% with respect to the RMSE. Similar conclusions can be
reached regarding the error as a function of the lead time and the launch time. Therefore,
the whole strategy can be applied under different scenarios for launch times higher than
1.5 hours, relying on the day-ahead prediction prior to this. For this case, the error matrixes
also indicate the best moments to obtain the predictions of the nodes, making it possible to
increase the reliability of the VPP operation.

The major limitation of this study is related to the information of temperature and
cloudiness freely obtained in Spain from NWP maps. In locations where this information
is not available forecasts cannot be provided. Future works will focus on the application of
this strategy along with a day-ahead time horizon strategy to schedule the operation of a
VPP, creating a software that simplifies the process.
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