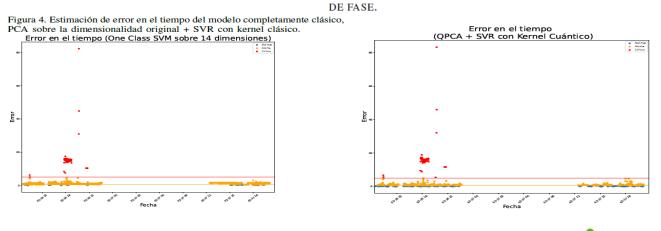

CYBERSECURITY. 'PURE QUANTUM COMPUTING'

Quantum Detection of Anomalies in Industrial

Same all


TARGET: Reduce the amount of resources required when anomaly detection is performed on classical data (the authors had only considered quantum anomaly detection for quantum states generated from quantum devices)

K.Clásico	$R^2 \ (\overline{x} \pm \sigma)$		K.Cuántico
Lineal (100)	$0,\!993\pm0,\!02$	$0,978 \pm 0,009$	PauliMap
Polinomial (1000)	$0,909 \pm 0,034$	$0,969 \pm 0,013$	ZMap
RBF (10)	$0,997 \pm 0,001$	$0,479 \pm 0,062$	ZZMap
Sigmoide (1000)	$0,993 \pm 0,002$		

Tabla II Tabla de coeficientes R^2 de los distintos kernels para los modelos obtenidos mediante el QPCA o circuito de estimación

